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Abstract

We describe an analytic method for the computation of equilibrium shapes for two-dimensional
vesicles characterized by a Helfrich elastic energy. We derive boundary value problems and solve
them analytically in terms of elliptic functions and elliptic integrals. We derive solutions by pre-
scribing length and area, or displacements and angle boundary conditions. The solutions are
compared to solutions obtained by a boundary integral equation-based numerical scheme. Our
method enables the identification of different configurations of deformable vesicles and accu-
rate calculation of their shape, bending moments, tension, and the pressure jump across the
vesicle membrane. Furthermore, we perform numerical experiments that indicate that all these
configurations are stable minima.

1 Introduction

The evolution of vesicle dynamics is characterized by a competition between membrane elastic
energy, inextensibility, and the non-local hydrodynamic forces. Inextensible vesicles have received
a lot of attention as they are present in many biological phenomena [20] and have been used
to understand properties of biological membranes [18]. Experiments on vesicle tumbling, tank-
treading, and deformation under shear flow have been conducted by various groups [4, 5, 12, 10, 11].
In addition, vesicles have been used as models for red blood cells [13, 16] and drug-carrying capsules
[22].

The observable of interest in both equilibrium and dynamic studies of vesicles is their shape, but
few analytical solutions exist for calculating the shape under various constraints. The known closed
form solutions solve the shape equation for axisymmetric vesicles for special boundary conditions
[14]. The shape equation for axisymmetirc vesicles is a fourth order non-linear ordinary differential
equation and a general solution to this equation has not been obtained. The analogue of the shape
equation in two dimensions is more amenable to analysis and provides valuable insight for the
axisymmetric problem, and has been treated by many authors [3, 21, 19]. For example, Arreaga et
al. [3], give a detailed analysis of elastic loops under area and length constraints and obtain analytic
solutions for the shape, assuming known tension and pressure. Shi et al. [21] consider adhesion
of two dimensional vesicles on curved substrates and obtain force deformation relationships for the
vesicle as a function of substrate shape. The analysis of Shi et al. follows the work of Seifert
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[19] who obtained shape equations for two dimensional vesicles both in the presence and absence
of adhesive forces. Seifert uses a series solution to obtain lowest energy shapes of free vesicles
for various values of the prescribed pressure difference and shows that the shapes obtained using
the two dimensional theory are similar to those obtained by numerically solving the axisymmetric
shape equations.

Computation of the vesicle shape is also key to interpreting an interesting class of experiments
involving interactions of microtubules and lipid vesicles as reported in Fygenson et al. [7]. In this
experiment, the authors were able to induce shape changes in vesicles by growing microtubules
within them. In order to determine the vesicle shape, the authors minimize a free energy by
representing the vesicle contour by lines and circular arcs instead of solving the shape equation for
axisymmetric vesicles with the appropriate boundary conditions. Also, they look at the slope of
the free energy of the equilibrium shape with respect to different values of the micro-tubule length
and determine the force exerted by the membrane on the microtubule. Solving the axisymmetric
shape equation for the constraints imposed by the micro-tubule, to the best of our knowledge, has
not been done before. In this paper, we give a solution of the two dimensional analogue of this
problem to develop intuition for solving the axisymmetric problem.

Contributions. We present an analytical method for the calculation of two-dimensional equi-
librium shapes of quiescent vesicles immersed in stationary fluids. First, we consider the case in
which we prescribe area and length constraints, and then (1) derive equilibrium shapes analyti-
cally, and (2) verify them using a numerical scheme developed in our group [24]. To an extent,
our construction is similar to the one presented in [3] but we prescribe different, and perhaps more
natural, constraints on the vesicle. In [3], the authors prescribe pressure and tension. We prescribe
either area and length constraints or displacements between two parts of vesicles along with angle
or curvature information. Second, we consider the setting of [7], and obtain similar shapes as the
ones reported in their experiment by solving a boundary value problem for the vesicle. In this way,
we can explicitly determine the force on the microtubule, but in addition we can also compute the
bending moment exerted by the membrane on the microtubule. The bending moment determines
how easily the microtubule will develop a curvature (or buckle) as it pushes on the vesicle.

2 Problem Formulation

In this section, we state the equations that determine the vesicle equilibrium shape. There are two
different (but related) ways to derive these equations: the variational approach, which we use to
construct analytic solutions, and a fluid-structure dynamics approach, which we use for numerical
computations. In the variational approach, the equilibrium shape is solved as a constrained mini-
mization problem: we seek to find the shape that minimizes the bending energy of the membrane
assuming we know its length and enclosed area. In the dynamics approach, we model the dynamics
of an arbitrary-shaped, locally-inextensible vesicle. The interior and exterior of the vesicle are occu-
pied by a stationary incompressible Stokesian fluid. The vesicle induces a velocity field in the fluid
due to its membrane forces and due to the no-slip coupling boundary condition at the interface.
We solve the governing equation of the fluid numerically, until the velocity field becomes zero. The
vesicle shape at the end of the simulation is the equilibrium shape.

Variational approach. We introduce Lagrange multipliers o (tension) and p (pressure), for
the length and area constraints respectively, and we seek stationary points of the Lagrangian
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where k is the curvature, 7 is the boundary of the vesicle, x is a point on =, n is the unit normal,
L is the length, and A is the enclosed area. Without loss of generality, we assume a unit bending
modulus for the membrane. The force acting on the membrane is computed by taking variations of
L with respect to . This force can be written as a sum of a force due to bending f, = (kss + %J)n,
a force due to tension f, = —okn, and a force due to pressure f, = pn, where s is the arc-length and
t is the tangent at a point on 7. At equilibrium, f; 4+ f; 4 f, = 0. The force balance in the normal
direction yields a second-order, inhomogeneous, non-linear differential equation for the curvature
K, which is given by

1
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The constants o and p are determined from the specified length and area of the vesicle. We
impose periodic boundary conditions and solve (1) analytically; given &, the shape of the vesicle is
determined uniquely [23].

Dynamics approach. The surrounding fluid is assumed to be Stokesian with unit viscosity
[15]. The total membrane force is the sum of a force due to bending f,. and due to the inextensibility
f,. The tension (o) acts as a Lagrange multiplier enforcing the inextensibility locally. As a result,
the expression for f, involves an additional term and is given by f, = st — okn, where t is the unit
tangent vector. Let x be the position of the vesicle boundary. The vesicle dynamics is governed by

d
x = S[f. + f5](x) and t-d—X:O, (2)

s
the momentum and the local inextensibility constraint respectively. We enforce the local inexten-
sibility by requiring the surface divergence (t - d%) of the velocity field (x) on the fluid-vesicle
interface to vanish. The free-space Stokes single-layer potential S[f] is defined by S[f](x) =

J, G(x—y)f(y) ds(y) with
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For a locally inextensible vesicle, the force due to curvature can equivalently be written as
f, = —Xssss (see Appendix A of [24]). Following the identity xss = —kn, the tension force can be
written as f, = (0x;)s. In 2D, the surface divergence of a vector field v is given by t - %v = X4 Vg.
Substituting these expressions into equation (2), we get

X = —S[Xssss) (%) + S[(0%Xs)s](x)  and  xg- (S[(0Xs)s])s = Xs - (S[Xssss))s- (4)

3 Solution Methodology

In this section, we construct analytical solutions for (1) and discuss a numerical scheme for solving
the fluid-structure dynamics problem (4).

3.1 Analytic Solution

From equation (1), we integrate over the arc-length s and get



where C' is a constant. Without loss of generality we assume that ks = 0 at s = 0 and k(0) = ko.
We then eliminate C' and rewrite the differential equation above as
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where we have introduced a new variable y(s) = —*

) and the constants P and @) are given in

KQ—
terms of the tension ¢ and pressure p by
P = k3 —20Ko+2p, (7)
—3k2
Q =  +o. (8)
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There are three unknown parameters P, (), and kg in these equations and they will be determined
by imposing three constraints as we shall show later. The integral on the left-hand side of (6) can
be calculated in terms of elliptic functions, assuming that the cubic in the radical has only one real
root « [9] and admits the factorization:
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where m and n are real. The result is:
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where y1 and y3 are roots of the quadratic equation
y? — 2ay + 2ma — (m? +n?) = 0. (11)
It follows from (6) that
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Remark. We could have also started with the possibility that the cubic in the radical of (7) has
three real roots, but this leads to a contradiction. To see this we assume that y>+ Qy2 +By— #
(y +a)(y +b)(y + ¢), where a, b, c are real and satisfy a > b > ¢. This amounts to assuming that
there are four distinct values of x at which ks = 0. The differential equation (7) can now be
integrated by methods analogous to those for the imaginary roots and the solution turns out to be

sn?(y/2abc(c—a)s
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Ko — % and kg which contradicts our assumption that there are four distinct values at which x5 = 0.
Therefore, (12) is the final solution for the curvature.

The constants g, P and ) can be written in terms of m, y; and y3 as follows

k(s) = ko — . Corresponding to this solution the extrema of k(s) are

_ Ny
Dl pWtwn 05 o p <2m it y3> . (13)
2m(yy +ys) — 213’ m(y1 +y3)® 2

4



We impose the following constraints on the solution to determine kg, P and @ (or equivalently m,
y1 and ys3).

1. Periodicity of k. A closed vesicle of length L satisfies the periodicity condition x(0) = x(L),
where x(s) = [z1(s) x2(s)]. This and the smoothness of x(s) imply that the curvature k(s) is
periodic and satisfies k(L) = k(0) = ko. In order to enforce this constraint, we first observe that
(12) is already periodic since the elliptic function cn(s|k) satisfies cn(s|k) = cn(s+4¢K (k)|k) where
K (k) is the complete elliptic integral of the first kind and ¢ is an integer. We enforce k(L) = kg

by requiring that
Plus — -
P —w)p _ i <1 /= y3> . (14)
2 Y1 — Y3

Note that the minimum value of ¢ is 2; by the four-vertex theorem for a closed planar curve [6],
there exist atleast two minima and two maxima in k. Setting ¢ = 2 gives two lobed vesicles (see
Figure 1). By choosing ¢ > 2 we obtain g-lobed vesicles. In particular, we have obtained three-
and four-lobed shapes.

2. Length of the contour is L. As the angle # made by the tangent to the zi-axis goes from 0 to
2w, we traverse a length L along the vesicle contour. Said differently, the tangent to the vesicle
contour rotates through 27 radians as we go from from s = 0 to s = L. Hence we require

/L k(s)ds = 0 (L) — 0 (0) = 2r. (15)
0

3. Area enclosed by the contour is A. The final constraint is imposed on the area enclosed by the
2
contour. We prescribe an area A such that A < 4L—7T and enforce it as follows:

L
/ xocosfds = A, (16)
0

where we define x1(s) = [ cosfds and x2(s) = [; sin6 ds.

These constraints reinforce the known fact that the shape of the vesicle is determined entirely
by the reduced area v = 4;—;4 and the number of lobes ¢. The resulting algebraic equations for P,
@, and kg are solved numerically using Newton’s method. For a given reduced area, we start with
different values of the initial guess for the root for different values of q. Once, we have obtained
convergence for one value of the reduced area, roots for the other values of reduced area can be
obtained by continuation. The tension o and pressure difference p for a given reduced area then
follow immediately as solutions of (7) and (8). Shapes of two- and three-lobed vesicles for various

values of the reduced area v and their corresponding bending energy are shown in Figure 1.

3.2 Numerical Solution

The presence of high-order spatial derivatives in f,, makes the evolution equation (4) numerically
stiff [1]. As a result, numerical solution through a fully explicit time-marching scheme will be
computationally expensive. To overcome this issue, a semi-implicit scheme was proposed in [24].
Starting from arbitrary initial shapes, we use this scheme to compute the equilibrium shapes. We
briefly discuss this scheme here.

Let x(a,t) be a point on 7(t), where a € [0, 27] parameterizes the boundary. The numerical
scheme is based on discretizing uniformly in space {ay = %}fc‘i ! and time {nAt}Y_|. A Fourier
basis is used to represent the boundary and the derivatives on x are computed spectrally. Let



x(m,t),m = —%, el % — 1 be the Fourier coefficients of x(a,t). We compute x,, by
M/2-1
Xa(ayt) = Y (—im)&(m,t)e” ™. (17)
m=—M/2
The derivatives with respect to arclength s are computed by xs = ﬁ, where we substituted

Sa = |Xa|. Hereafter, we use |x4| to denote the magnitude of x4, that is, |xo| = /27, + 23,
Let x™ denote the position at n/At. Then a first-order time-marching scheme for (4) is given by

n+1 n 21 n+1 2w n
At 0 yal \lyal \Ival J o/ o/ o 0 lval/ o
(18)
27 n 2T n+1
Xy, - Gx",y") <0"+1}’0‘> da = —x) - Gx",y") < L ( L <ya > ) ) dao.
0 val/ 0 el \yal \ I¥val /o) o/ o
(19)

The tension and the term in the bending force with highest order derivatives on the position are
treated implicitly. The rest of the terms are treated explicitly. The high-order quadrature rules of
[2], designed to handle the logarithmic singularity, are used to compute the integrals. The unknowns
are the position x"*! and tension o"*! at {ak}iw: ! The system of coupled equations (18, 19) is
linear in the unknowns and solved using GMRES [17].

4 Results

We compute the equilibrium shapes by using the numerical scheme (18, 19) with an arbitrary
initial shape and by solving the constraint equations (14, 15, 16) and evaluating (12). In Figure
1, we plot a sample outcome of these computations. In the top Figure, we plot the snapshots
of two vesicles relaxing to equilibrium. In the bottom figure, we plot the analytically computed
equilibrium shapes for different reduced areas. Further, in Figure 2, we show the three- and four-
lobed equilibrium shapes. The parameters ¢ and p in equation (1) corresponding to different
equilibrium configurations are plotted in Figure 3.

At equilibrium, the tension and bending forces in equation (4) balance each other. Hence x
should vanish for an equilibrium shape. We use this fact for comparing our numerical and analytical
solutions. We supply the analytic solution as an initial condition to the numerical scheme. If the
analytical solution is indeed a minimum energy configuration for that particular reduced area, the
velocity field (%) induced by this shape must be zero. In Table 1, we report the maximum velocity
for different spatial discretizations. We observe that as the spatial discretization is refined, the error
converges to zero. This convergence illustrates the excellent agreement between our analytical and
numerical computations.

Using our numerical scheme, we also verified that the shapes with ¢ > 3 are indeed stable
equilibria. This is done by slightly perturbing the equilibrium shapes and verifying that they relax
to a shape with the same number of lobes.

5 Shape of the vesicle in the presence of a micro-tubule

Prescribing the area enclosed by the vesicle is one way of controlling its shape. The shape can also
be controlled by other methods, e.g., by growing microtubules within the vesicle [7]. The tension
o and pressure difference p in this problem are determined again by first solving for the shape. In
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Figure 1: In the top figure, we report the elastic energy as a function of time for two vesicles with different
reduced areas v. We also plot the evolution of the vesicle shapes to an equilibrium state. Notice that the
smaller the reduced area the higher the bending energy. In the bottom figure, we report the bending energy
as a function of the reduced area v for two different vesicle configurations both of which are stable local
minima. We can characterize the configurations by the number of lobes. Also, we show the equilibrium
shapes corresponding to different reduced areas. The bending energy increases with increasing number of
lobes and decreasing reduced area. The equilibrium shapes in both the figures coincide with the analytically

computed ones to several digits.

M 16 32 64 128
[V(x)[oo | 4.32¢-001 | 8.40e-004 | 7.79¢-009 | 3.21e-010

Table 1: We computed the equilibrium shape of the topmost vesicle shown in Figure 1 analytically. The
velocity field (4) evaluated on this shape must be zero. Here, we report the max-norm errors in computing
the velocity. M is the number of spatial discretization points on the vesicle used by our numerical scheme.
Since our spatial discretization scheme is spectral and the quadrature rules are high-order, the error decays

rapidly.
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Figure 2: Three- and four-lobed equilibrium shapes. Each of these shapes was presrcibed as initial condition
for the numerical scheme and velocity fields in the surrounding fluid were determined as the vesicle relaxed.
The induced velocities were nearly zero showing that these shapes are indeed at equilibrium. When small
perturbations were added to the shapes they relaxed back to the same equilibrium, leading us to conclude
that these are stable configurations.
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Figure 3: The tension and pressure difference plotted as a function of the reduced area v for vesicles of
length 27. Note that as ¥ — 1 (which corresponds to a circular vesicle) we approach different values of the
pressure and tension depending on the number of lobes in the vesicle. The limiting values of p and ¢ for the
circular vesicle satisfy ﬁ — 0R 4+ p =0 where R is the radius of vesicle.



order to illustrate this procedure, we consider the special case of p = 0 and solve for the shape of the
vesicle under a displacement constraint imposed by the microtubule. The equation of equilibrium

now reads: 5

Kss + % — ok =0. (20)

The solution to this equation can be written in terms of elliptic functions as follows:

1
K= an (%\k) and k% =2 —40)\? (21)
where ) is a length scale and k is a constant depending on the tension o. We integrate this once
to obtain 6(s) = 2am (35|k), where the integration constant has been eliminated by enforcing
6(0) = 0. It follows that

2(s) = /Oscosed,s:(l :2>s+i)\E(2)\|k) (22)
2a(s) = /Ossmeds:;?(dn(iyk)q), (23)

where E(s|k) = [; dn®(s|k)ds is the incomplete elliptic integral of the second kind and we have
removed two arbitrary constants by enforcing z1(0) = 0 and x2(0) = 0. Note that this solution pos-
sesses the symmetry z1(s) = —z1(—s) and z2(s) = xa(—s). The constants A and k are determined
by enforcing two constraints. For instance, we could specify the distance z1(%) — z1(—%) = a, as
would be the case when a microtubule of length a > % is placed inside the vesicle in such way that
it pushes against the membrane. This leads to the equation:

<1_k22>j+‘}$ ( |k> : (24)

A second equation can be obtained by various means. One possibility is to impose

0 (i) ~ %am <8L/\|/~c> — 0, (25)

where 6, is an angle determined by the nature of the interaction between the membrane and the
microtubule. A second possibility is to impose

p <i) . %dn <8LA\/<;) —0, (26)

which would be the case if the membrane exerts no moments on the microtubule at their point of
intersection. (24) and (25) or (26) are two equations in the two unknowns A and k£ and can be
solved numerically. The tension ¢ in the membrane is then easily determined from (21). The shape
of the vesicle is obtained from (22) and (23) and is symmetric about the z1- and zg-axes. The
results of this exercise are shown in Figure 4 where the end-curvature, tension, bending energy and
the vesicle shape are plotted as a function of the angle 9(%).

Note that the shapes seen in the experiment of Fygenson et al. [7] look ellipsoidal and similar
to the shapes with (%) = 90 degrees (see figure 4) when the microtubule is only slightly longer
than the diameter of the vesicle, while they have pronounced protrusions when the microtubules
are much longer than the vesicle diameter. This suggests that there might be non-specific adhesive
interactions between the micro-tubule and the vesicle when the microtubules are much longer than
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Figure 4: The curvature is plotted as a function of the angle §(L/4) made by the vesicle contour to the
ri-axis at s = % for a particular ratio of the microtubule length a and vesicle contour length L. A larger
magnitude of the end-curvature would imply a higher propensity for microtubule buckling. As the values
of 0, deviate from 90 degrees the shapes have localized protrusions at the points where the microtubule
interacts with the vesicle. This is similar to the observations of Fygenson et al. [7]. The inset shows the
variation of the bending energy and the tension as a function of (L /4). The bending energy is a minimum at
the angle where the curvature is zero. This would be the natural shape of the vesicle if the microtubule had
no other interactions with the vesicle except impinging on it. Formation of vesicle shapes with pronounced
protrusions suggests that there might be more complex interactions between the vesicle and microtubule.

the diameter of the vesicle. Indeed, Fygenson et al. [8] mention that non-specific (adhesive)
interactions between the tubulin monomers (that make up the micro-tubule) and the lipids (that
make up the vesicle) are possible. When the microtubules are many times longer than the vesicle
diameter cylindrical tethers are formed. Tether formation is imminent when the vesicle contour
develops an inflection point close to the location where the micro-tubule impinges on it [7]. The
angle made by the vesicle contour to the microtubule at this juncture can be determined by solving
(24) and (25) and compared with the experiment. For instance, at a/L = 0.37, the angle (%) ~ 120
degrees when tubule formation is imminent (see Figure 4) in our two-dimensional problem.

6 Conclusions

In this paper, we have obtained analytical solutions to the shape equations for a vesicle in two
dimensions. Our solutions allow us to determine the vesicle shape under constraints of given length
and given enclosed area. We used a numerical method to show that equilibrium multi-lobed vesicles
are stable. Also, we have solved analytically for the shape of the vesicle when the distance between
two points on the contour is constrained by the presence of a micro-tubule. We have shown that
our two-dimensional theory is capable of producing shapes that are similar to those seen in the
experiments of Fygenson et al. [7]. We believe that the results presented here provide valuable
insight for the solution of the full axisymmetric shape equations. It is our future goal to solve
the axisymmetric shape equations with the constraints imposed by the micro-tubule assuming no
topology changes.
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