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Abstract—This paper investigates the problem of atlas regis-
tration of brain images with gliomas. Multi-parametric imaging
modalities (T1, T1-CE, T2, and FLAIR) are first utilized for
segmentations of different tissues, and to compute the posterior
probability map (PBM) of membership to each tissue class, using
supervised learning. Similar maps are generated in the initially
normal atlas, by modeling the tumor growth, using reaction-
diffusion equation. Deformable registration using a demons-
like algorithm is used to register the patient images with the
tumor bearing atlas. Joint estimation of the simulated tumor
parameters (e.g. location, mass effect and degree of infiltration),
and the spatial transformation is achieved by maximization of
the log-likelihood of observation. An Expectation-Maximization
algorithm is used in registration process to estimate the spatial
transformation and other parameters related to tumor simulation
are optimized through Asynchronous Parallel Pattern Search
(APPSPACK). The proposed method has been evaluated on five
simulated data sets created by Statistically Simulated Defor-
mations (SSD), and fifteen real multichannel glioma data sets.
The performance has been evaluated both quantitatively and
qualitatively, and the results have been compared to ORBIT, an
alternative method solving a similar problem. The results show
that our method outperforms ORBIT, and the warped templates
have better similarity to patient images.

Index Terms—Statistical atlas, deformable registration, brain
tumor, EM algorithm, tumor growth modeling, reaction-diffusion
equation.

I. INTRODUCTION

GLIOBLASTOMA multiforme (GBM), a primary malig-
nant brain tumor, is the most common form of the glioma

tumors, which in spite of multi-modality treatments, remains
as an incurable and rapidly fatal disease. The anatomic location
of a glioma influences prognosis and treatment options. A
few studies aim at discovery of the distribution of gliomas in
different anatomic areas of the brain. For instance, Larjaavara
et al. [1], demonstrate that such distribution of location of
gliomas is an uneven function within the brain, with the
densest occurrence in the frontal lobe. Duffao et al. [2]
find that low grade gliomas are often observed in secondary
functional areas of the brain. While in these works, manual
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localization of glioma (in standard space) has been utilized,
a deformable registration framework can be very useful for
objective numerical evaluations of such clinical findings since
various patient images can be mapped to a common space
or atlas. Such an statistical atlas derived from glioma images
can be a powerful tool for summarizing the population data,
examining the spatial relationships between pathology and
other anatomical locations, knowledge discovery and learning
of glioma behavior.

Although a plethora of methods for normal-to-normal brain
registration exist [3]–[17], the problem of registering images
of tumor patients to standardized templates has been relatively
unexplored, and proven to be extremely challenging. Due to
large deformations and lack of clear definition of anatomical
detail in patients images, direct application of the available
registration methods to images of tumor patients can lead to
poor registration around the tumor region. In most of glioma
bearing MR images, the confounding effects of edema and
tumor inltration, which cause changes in the image intensities,
render the task of finding correspondences difficult. In fact,
the fundamental assumption of existence of correspondences
between the atlas and the patients images, which is ubiquitous
in the most of the available deformable registration methods,
is violated due to the anatomical changes caused by tumor
emergence and tissue death. Another difficulty, is the presence
of the mass-effect in the patient image. Mass-effect causes
deformations of the adjacent structures and ventricles by
excessive pushing, rendering it difficult to apply standard
image warping algorithms.

This paper presents a framework to circumvent these diffi-
culties by building upon our work in [18], [19], i.e. , creating
a topologically equivalent atlas by simulating tumor in the
atlas space and use it for registration to patient images. The
parameters of this tumor simulation are estimated as part of the
registration process. Apart from methodological details, one
feature that is different in our method compared to [18], [19],
is the tumor type studied here. The method in [18], [19] used
a simple pressure model to simulate the tumor mass-effect on
the atlas and did not consider tumor infiltration and presence
of edema, the most important issues in glioma patients, which
are the focus herein. The glioma images usually indicate severe
complexities around the tumor and may include edemas that
render the registration task extremely challenging. To the best
of our knowledge, this work represents the first report of such
registration task in the literature.

As in [18], [19], we capture the total deformation (between
atlas and patients image) using two different components:
the mass effect, and the deformation due to the inter-subject
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differences. Explicit mass-effect simulation by biophysical
models [20]–[22] is performed in the atlas space prior to warp-
ing to target patient image, thereby allowing more realistic
warps to be achieved via image warping. Furthermore, other
information such as estimated tumor density can be directly
used to compute similarities to the patient images.

A. Related Work
A few publications have proposed the spatial normalization

of pathological brain images. Masking of pathologies is uti-
lized in Brett et al. [23] and Stefanescu et al. [24] where the
warping close to tumors is only driven by the information of
the neighboring structures. Nowinski et al. [25] use feature
points (Talairach transformation), followed by a radial mass-
effect model to warp atlas onto the patient image. In order
to create topologically equivalent pair of images, Kyriacou
et al. [26] remove the tumor from the patient image, other
methods embed a tumor in the atlas (atlas seeding). Atlas
seeding has also the advantage that allows more realistic
warping, in the form of mass-effect, to be captured. In these
methods, a deformation field is first created by mass-effect
models, e.g. simplified radial growth models [25], [27] , and
later refined by a non-rigid deformation based on optical
flow [28]–[30]. Incorporation of more advanced biomechanical
models of the tumor growth to simulate tissue loss and
compute displacements, was introduced in a series of previous
publications by our group. For instance Mohamed et al. [31],
[32], developed a PCA based statistical method to learn the
tumor-growth deformations across different subjects, or within
the same subject [18]. The statistical approach was chosen to
reduce the high computational cost of the finite element based
biomechanical models for tumor growth simulation leaving the
burden of simulations to off-line training. Statistical models,
however, are not very accurate and also are limited by the
parameters used during training.

Recently, Zacharaki et al. proposed ORBIT [18], [19].
Similar to our framework, ORBIT simulates the tumor growth
and mass-effect on the atlas prior to warping to the patient
image, and it also estimates the best parameter set for this
simulation. As ORBIT is originally designed to work with
tumors with minimal edema and infiltration, tumor simulation
is achieved using the pressure model described in [22], a
framework which models tissue necrosis and its replacement
by the tumor and also computes the mass-effect. As a result
ORBIT, only estimates seed location and the tumor growth
factor as the required parameter set.

In contrast to ORBIT, the primary objective of this work
is the registration of brain images with GBM, a particular
kind of primary tumors which is known to be infiltrative. The
tumor may take on a variety of appearances, depending on the
amount of hemorrhage, necrosis, or its age and might indicate
no clear edges. Mass effect from the tumor and edema may
compress the ventricles. Therefore, images with GBM usually
have complex and inhomogeneous imaging patterns, which can
not be appropriately simulated using the simple pressure tumor
model as done in ORBIT.

This paper, proposes a new framework to handle some
of these complexities through the following elements: 1) As

illustrated in [33], using multi-modality MR imaging and
supervised SVM based classification, the original intensity
data is transfered into the space of the probability maps
(PBMs) of various tissue types, which can be viewed as the
memberships to normal and abnormal tissue classes. 2) A
more realistic biomechanical tumor model [20] appropriate
for GBM, is integrated to our registration framework, and the
relevant parameters for the tumor growth modeling (such as
seed location, diffusion coefficients etc. ) are estimated. Given
an atlas and its corresponding set of healthy tissue probability
maps, the estimated tumor density map and the mass-effect is
used for explicit computation of the PBMs in the atlas space,
allowing the similarities between the corresponding PBMs
of the patient and atlas to be measured. 3) We anticipate
that the edema can not be estimated through the diffusion-
reaction based modeling of tumor growth in [20]. Presence of
vasogenic cerebral edema depends on the intracranial pressure
gradient and involves complex mechanisms where the bulk
flow and not diffusion should be considered as the main cause
for the spread of edema through the white matter [34]. The
proposed method is capable of handling the lack of edema
and such unrealistic molding issues, through the segmentation
of the patient space into three different regions roughly as:
edema, non-edema and outliers (w.r.t. registration model).

Because no a priori information about the tumor parameters
and the registration is given, our problem of joint estimation of
the warping, tumor growth parameters and the segmentation
labels, is an estimation problem from incomplete data. The
classical approach toward such problems in the literature, is
to utilize the Expectation-Maximization algorithm as it has
been followed in this work. In short, EM is utilized for
three purposes: First, to estimate the outliers region, where
no correspondence can be identified between the patient and
atlas spaces, Second, to estimate the plausible regions where
a partial or full correspondence between the actual patient
and estimated PBMs in the atlas can be achieved, Third, to
provide a framework to estimate the deformation field. In this
respect, we regard the deformation field as a high-dimensional
parameter set that should be estimated through EM.

This paper is organized as follows. In section II, we briefly
review our tumor generator model and introduce the relevant
parameters that are estimated. In section III, the basis of the
simulation of the atlas (moving) PBMS is illustrated. The
details of our EM algorithm are given in section IV, where we
derive the update equation for the deformation field. In section
VI the efficacy of this framework on both synthetic and clinical
cases is evaluated, and the sensitivity of registration to the
tumor parameter estimation is presented. The paper concludes
in section VII.

II. BIOMECHANICAL TUMOR MODELING

The framework for modeling the glioma tumor growth and
its mechanical impact on the surrounding tissue is the same
as the outlined modeling by Hogea et al in [20], [35]. In this
section a brief review is given, mainly to illustrate the set
of parameters that are used to simulate the tumor growth,
hereafter called q. The modeling framework consists of a
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Fig. 1. Imaging profile of a glioma; from left to right: T1, Contrast enhanced
T1, FLAIR and T2 images.

reactive-advective-diffusive mass transport for tumor cells,
coupled with elasticity for the brain [21], [36].The system of
PDEs governing the deformable model to simulate the glioma
growth consists of:

∂Cq

∂t
−∇ · (D∇Cq) +∇ · (Cqv)− ρCq(1− Cq) = 0.

∇ · [λI∇ · u + µ(∇u +∇uT )]− f(Cq,p)∇Cq = 0.

v − ∂u
∂t

= 0.

∂m
∂t

+∇(m)v = 0. (1)

where Cq, is the generated tumor density corresponding to the
set of parameters q, and u, v are displacement field caused by
the presence of the tumor and velocity field, respectively. The
parameters include: D ∈ {DWM , DGM} the diffusion coef-
ficients, the Young modules µ, λ and proliferation coefficient
ρ. Other quantities include m = (λ, µ,D) and the f(Cq,p)
is a function of the tumor density that controls the behavior
of the mass-effect, defined as:

f(Cq,p) = p1e
− p2

Cq2 e
− p2

(2−Cq)2 (2)

The parameter p2 regulates both the spatial location and
the strength of the mechanical deformation caused by the
tumor, while p1 is simply a scaling factor. Given any arbitrary
boundary and initial conditions over Cq,u and v, the system
of equations in (1) are solved using a fast Eulerian continuum
approach on a unmeshed grids of nodes [20]. For the set of all
experiments we let zero initial conditions for the displacement
and the velocity field and assume the following for the tumor
density:

Cq(x, t = 0) = exp(−(x− x0)2/d2). (3)

Where we chose d to be the same as the image resolution
to allow the initial distribution to be fairly localized at x0.
Given this definition, the set of (tumor) parameters which are
estimated within our algorithm consist of:

q = {x0, DWM , DGM , ρ, p1, p2} (4)

III. METHOD

In this section the basis of our algorithm is illustrated. We
emphasize that throughout the paper we will refer to the fixed
space as the patient space and the moving (warped) space as
the atlas, in other words we warp the atlas to the patient space.

Fig. 2. Sample PBMs computed from SVM; from left to right: F1 (tumor),
F3 (gray matter), F4 (white matter) and F5 (edema).

(a) (b) (c)

(d) (e)

Fig. 3. Constructing the set of moving feature images. (a) T1 healthy template
image segmented by FAST [37] to make original template tissue probability
maps (not indicated), the marker indicates a tentative seed location designated
to create moving PBMs: (b) created tumor density map Mq

1 ; (c)-(e) Mq
2 ,M

q
3

and Mq
4 : tissue probability maps with mass-effect and soft-masking by tumor

density map in (b), see the set of equations in (5).

A. Computing Fixed Feature Images Using SVM

One of the basic challenges for intensity based tumorous
image registration task, is that the relation between the ob-
served image intensity and the density of cancerous cells, is
either unknown or very complex. For example, as seen in
Fig.1, in the T1 weighted modality edema and non enhancing
tumor areas have very close range of intensity values to gray
matter, however the corresponding FLAIR image, reveals the
edema in much better way by a hyper-intense signal around
the tumor. Therefore, image intensity does not seem to be a
reliable source of information for our registration task.

As discussed in [33] multi-modality imaging can help dif-
ferentiating various tissue types in patients with brain tumors.
Based on multi-parametric imaging techniques, in [33] super-
vised classification using SVM was performed to segment the
brain images into six different classes, namely: white matter
(WM), gray matter (GM) and CSF, enhancing tumor (ET),
non-enhancing tumor (NET), edema or swelling around the
tumor (ED). (Necrosis was manually segmented as tumor.) In
this paper a similar SVM segmentation framework has been
utilized for classification of the pathological images. More
specifically, we use four modalities, namely T1/T2/FLAIR
and T1-CE (constrast-enhanced perfusion), as the multichannel
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imaging profile of the patient, and train a SVM model to
compute the posterior probability maps [38] of different tissue
types in the patient space. Sample results of such computed
PBMs are given in Fig.2. In the next step, these PBMs are
registered to their corresponding estimated pairs in the atlas.
The estimated PBMs of diseased tissue types in the atlas
(moving template) are constructed using the estimated tumor
density map and mass-effect. This step has been explained in
further detail in section III-B.

For simplicity, we assume that the ET and NET classes can
be integrated under a unique tumor label (TU). In addition,
since the necrosis is in fact the death of the cancerous cells
as a result of too much density and the lack of enough
nutrition, we regard it as a part of TU with probability of
one, and the computed PBMs from SVM are masked to take
this effect. Therefore we can hypothesize that a set of L = 5
feature images Fj(x), corresponding to different tissue PBMs
computed by SVM, is defined in a fixed space ΩF and x ∈ ΩF
whereas 1 ≤ j ≤ L enumerates the set of class labels:
{TU,CSF,GM,WM,ED}.

B. Constructing Moving Feature Images

As explained in the previous sections, diffusion-reaction
equation is used for tumor growth modeling. However, edema
is not modeled explicitly as this would entail complex poroe-
lastic material [39]. Because of missing the edema in at-
las, only four feature images Mq

j (x) corresponding to the
probability maps of {TU,CSF,GM,WM}, are computed
in the moving space ΩM . Since the tumor density is in fact
the partial volume of the space that has been occupied by
the tumor, deterministic relations between the the original
PBMs of healthy moving template and those obtained after
embedding the tumor can be established similar to [40]. Let a
tumor density map 0 ≤ Cq(x) ≤ 1 be defined in the moving
space ΩM . Such relations can be written as: 1

Mq
1 (x) = Cq(x)

Mq
2 (x) = PCSF (u(x))(1− Cq(x))

Mq
3 (x) = PGM (u(x))(1− Cq(x))

Mq
4 (x) = PWM (u(x))(1− Cq(x)) (5)

where u(x) is a mapping from ΩM to ΩM and explains the
mass-effect of the tumor, and Pl(·), l ∈ {CSF,GM,WM}
denotes the tissue PBMs that represent the atlas structure
prior to tumor growth. Note that we have

∑
jM

q
j (x) = 1

as they indicate modified probability maps. A sample output
of equation (5) has been depicted in Fig.3 that illustrates how
moving side feature images, i.e. , Mq

j (x)s are produced.

IV. EM ALGORITHM WITHIN THE REGISTRATION
FRAMEWORK

As stated in section I, our alternating framework for reg-
istration and estimation of the tumor parameters has been
motivated by the EM algorithm. The cost function of our

1In a discrete analogy, equations in (5) can be explained using expectations
in multivariate hypergeometric distribution. For the sake of brevity the final
equations are mentioned here.

Algorithm 1 Estimation of the optimum deformation field and
tumor parameters: (Φo, qo)

1: Emin ← +∞
2: while APPSPACK queue is not empty do
3: Pop a q from queue.
4: Using EM Compute: Φt = argminΦ−logf(Yq|Φ).
5: Et ← −logf(Yq|Φt).
6: if Et < Emin then
7: Emin ← Et.
8: Φo ← Φt.
9: qo ← q.

10: end if
11: Return Et to APPSPACK.
12: end while

(a) (b) (c) (d)

Fig. 4. Automatic partitioning of ΩF through equation (16) in the E step:
(a)Patient T1 image, (b)edema’s probability map (F5) measured by our SVM
classifier is used as the prior map for D1 i.e. π1(·), (c)computed membership
function for class one (w0), and (d)computed membership function for class
zero (w1) in steady state.

registration algorithm can be intuitively interpreted as a condi-
tional l2 similarity measure between corresponding estimated
moving (atlas) and real patient PBMs. However, the lack of
edema information by tumor modeling in the atlas, prevents
such a naive similarity to be a confident measure throughout
the entire image domains. In fact, since edema is confined to
white matter [40] and remains unobserved, the estimated white
matter probability Mq

4 (x) around the tumor is not reliable. The
remedy taken in this paper, is to use Expectation-Maximization
algorithm explained in section IV-A to segment ΩF in two
different regions: a sub-domain D0 in ΩF within which a full
vectorial l2 similarity measure between Mq

j (x) and Fj(x),
1 ≤ j ≤ 4 is plausible, and D1 in which the white matter
information is excluded from driving the registration. This
partitioning is guided by the patient edema’s PBM, and is
statistically estimated through the E step as illustrated in the
next section.

A. Problem Definition and The Cost Function

Let 1 ≤ i ≤ N represent the index of an arbitrary voxel xi
in ΩF and h(x) define the transformation from space ΩF to
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ΩM . Let a set of N i.i.d observation vectors be defined as:

Yq = {yq
i |y

q
i = [F1(xi)−Mq

1 ◦ h(xi),
· · · , F4(xi)−Mq

4 ◦ h(xi)]t,xi ∈ ΩF }. (6)

As explained in section IV, we consider partitioning of ΩF
into D0 and D1. To that end we assume that the pdf of i th
observation vector yq

i , can be modeled as a mixture of the
two pdfs (f0, and f1) and estimate the weights of the mixture
in the E step. We define f0, and f1 as:

f0(yq
i |Φ) =

4∏
j=1

1√
(2π)σ2

j

exp[−
(Fj(xi)−Mq

j ◦ h(xi))2

2σ2
j

],

f1(yq
i |Φ) =

1
2

3∏
j=1

1√
(2π)σ2

j

exp[−
(Fj(xi)−Mq

j ◦ h(xi))2

2σ2
j

].

(7)

where Φ = {h(xi), σ1, · · · , σ4|xi ∈ ΩF , 1 ≤ i ≤ N} is the
set of unknown parameters to be estimated. Note that the last
channel information in f1 has been replaced by a uniform
distribution 2, posing no similarity constraint on white matter.

In order to make a more compact notation in the next steps,
we introduce variance matrices S−1

0 , S−1
1 defined as:

S−1
0 = diag(σ−2

1 , σ−2
2 , σ−2

3 , σ−2
4 ),

S−1
1 = diag(σ−2

1 , σ−2
2 , σ−2

3 , 0). (8)

Using these definitions equations in (7) can be written as:

f0(yq
i |Φ) =

1√
(2π)4|S0|

exp[−1
2

(yq
i )tS−1

0 yq
i ].

f1(yq
i |Φ) =

0.5σ4√
(2π)3|S0|

exp[−1
2

(yq
i )tS−1

1 yq
i ]. (9)

Our problem of joint registration and estimation of the q
(tumor parameters) can be defined as the optimum solution
of the following problem:

(Φo, qo) = argmin
Φ,q

−logf(Yq|Φ). (10)

and:

f(Yq|Φ) =
N∏
i=1

(
1∑
k=0

πk(xi)fk(yi
q|Φ)). (11)

where πk(xi) is the value of the prior probability of class k at
voxel xi ∈ ΩF . In the literature, this is achieved by applying
the classical principle of the Expectation-Maximization algo-
rithm, minimizing an upper bound of the right hand side of
(10). This requires the derivatives of the cost function w.r.t
the set of unknown parameters to be computed first. However,
we have no analytical expression for the derivatives w.r.t to
q and the numerical computation of those derivatives and
following a line search algorithm to minimize the cost, can
be extremely expensive in terms of CPU cycles. As a remedy
we only estimate Φ within the classical EM algorithm and
optimize q by APPSPACK, a derivative-free parallel pattern

2given the fact that Fj and Mq
j are probability maps staying between 0 to

1, F4−Mq
4 ◦h is a random variable between [-1,1], hence the corresponding

uniform distribution is 0.5.

search algorithm [41]. In other words, in stead of solving
(10), we decouple the minimization and solve the following
problem:

(Φo, qo) = argmin
q
{argmin

Φ
−logf(Yq|Φ)}. (12)

Where inner minimization w.r.t Φ is achieved by EM, and
outer minimization is done by APPSPACK. In practice this
means that, the tumor parameters q are not updated through
the consecutive iterations of E and M steps until convergence
where the computed cost value is returned to APPSPACK
as a new sample of the cost function. The computed cost
value is then utilized by a search algorithm implemented in
APPSPACK to inquire another sample of the cost function
and identify a new minimum. Since this procedure requires
several evaluations of the cost function, multiple instances of
EM algorithms with different tumor parameters need to be
executed. To that end, we use APPSPACK which allows us to
gain a significant efficiency, thanks to its parallel execution.
The procedure has been illustrated through the algorithm 1.

The parameter estimation can be made robust by mod-
eling the “outliers’ class. This is particularly important in
our registration application, since it allows relaxation of the
similarity constraint whenever no actual correspondence can
be established between the patient and atlas images. To that
end, the ML cost in (10) is modified by implicitly introducing
a third rejection class. Similar to segmentation framework
outlined in [42], at every iteration: m, given the current
estimate of the unknown parameters Φ(m−1), the modified
likelihood for parameter estimation is written as:

Qq(Φ|Φ(m−1)) =
N∑
i=1

1∑
k=0

p
(m)
ik log(fk(yq

i |Φ) + λ). (13)

In which λ is a small constant. Increasing λ also increases
the robustness on the parameter estimation (registration), but
also adversely affects the sensitivity w.r.t segmentations. In
this paper, we found λ ' 1e−3 to be a good compromise
between robustness and sensitivity. p(m)

ik stands for posterior
probability at iteration m of class k at voxel i, computed in
E step as 3:

p
(m)
ik =

fk(yq
i |Φ(m−1))πk(xi)

Σlfl(y
q
i |Φ(m−1))πl(xi)

. (14)

We use the edema’s PBM measured by our SVM classifier
in the previous section for setting: π0(·) = 1 − F5(·) and
π1(·) = F5(·). As explained in [42], robust estimation of Φ
can now be achieved by maximizing:

Qq(Φ|Φ(m−1)) =
N∑
i=1

1∑
k=0

w
(m)
ik log(fk(yq

i |Φ)). (15)

where:

w
(m)
ik = p

(m)
ik

fk(yq
i |Φ(m−1))

fk(yq
i |Φ(m−1)) + λ

. (16)

3we will refer to the iteration number in parenthesized upper indexes
throughout the rest of paper. In addition vectors and matrices are notified
in bold fonts.



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MEDICAL IMAGING 6

The computed weights w
(m)
ik , k = 0, 1 at every voxel i

define the membership values of that voxel to each cluster
k. Therefore they represent an statistical estimation for the
partitioning of the ΩF to D0 and D1. A couple of sample
partitioning has been indicated in Fig.4, which also illustrates
that how the extracted edema’s PBM from SVM, are utilized
as spatial prior functions for such segmentations.

B. Estimation of Φ
Because the number of unknown parameters to be estimated

in Φ is very large (' N3), the estimation problem is highly
ill-posed. Robust estimation could be achieved by smoothness
constraint over deformation field i.e. his modeled through
a Markov Random Field, however, such an approach makes
the closed form solutions difficult. Here we choose to relax
this constraint and derive an explicit form for his and then
project the obtained deformation to the space of the acceptable
deformations ( merely smooth or diffeomorphic transforma-
tions). Therefore, although the deformation field is explicitly
estimated according to maximum-likelihood principle, it is
smoothed by convolution with a Gaussian filter, similar to
Thirions’ demons framework [43].

In M step, in addition to updating the variances, we derive
the update equation for the deformation field using directional
derivative principle. To that end, the variation of (15) w.r.t an
infinitely small and arbitrary test function ψ, is assigned to
zero, i.e:

< ∂Qq(Φ|Φ(m−1)), ψ >= lim
||ψ||→0

{Qq(Φ(m−1) + ψ|Φ(m−1))

−Qq(Φ(m−1)|Φ(m−1))} = 0. (17)

where Φ(m−1) + ψ = {h(m−1)(xi) + v(xi)|xi ∈ ΩF , 1 ≤
i ≤ N, , σ

(m−1)
j + εj , 1 ≤ j ≤ 4}. Replacing (7) in (15) and

keeping the second order terms, as the proof is given in the
appendix, the update rule of the velocity field can be obtained
by the solution to the following 1 ≤ i ≤ N independent linear
systems:

W(m−1)
i .vi = −r(m−1)

i . (18)

where matrix Wi is defined as:

W(m−1)
i = ∇M ◦ h(m−1)

i [w(m−1)
i0 (S0

(m−1))−1

+w(m−1)
i1 (S1

(m−1))−1](∇M ◦ h(m−1)
i )t. (19)

∇M is a 3× 4 matrix defined by column-wise concatenating
of the gradient vectors of the moving PBMs, i.e. :

∇M = [∇Mq
1 ∇Mq

2 ∇Mq
3 ∇Mq

4 ]. (20)

r(m−1)
i is defined as:

r(m−1)
i = 2[w(m−1)

i0 (S0
(m−1))−1

+w(m−1)
i1 (S1

(m−1))−1]yq
i

(m−1)
. (21)

Solution to (18), similar to [43], can be made more stable by
adding a norm penalizing term for the update velocity vi at
the left hand side:

[W(m−1)
i +

I3×3

(δ(m−1)
i )2

]vi = −r(m−1)
i . (22)

where (δ(m−1)
i )2 is proportional to the maximum norm of the

update (||vi||). In this paper we define it as:

(δ(m−1)
i )−2 =

(yqi1)2

(σ(m−1)
1 )2

+
4∑
j=2

(yqij)
2. (23)

where yqij denotes the jth element of the vector yq
i . The reason

for such selection is empirical and can be explained as follows:
because of the initial approximate alignment, the variances are
in practice much smaller than one, i.e. σ(m−1)

j � 1. Therefore
in the regions far separated from the tumor where (yqi1)2 ≈ 0,
the registration is dominated by W(m−1)

i , whereas in regions
where σ

(m−1)
1 � (yqi1)2 i.e. adjacent to tumor, (δ(m−1)

i )−2

takes large values and therefore the norm of the update vector
||vi|| is further penalized. This property is important and
minimizes unrealistic warping in the vicinity of tumors.

Another distinction of our formulation from the original
demons algorithm presented in [43], [44], is the mechanism for
estimation and masking out the outliers by the engagement of
the time varying weights in the update equation (22). In fact,
it is easy to see that for any outliers making w(m−1)

i0 ≈ 0 and
w

(m−1)
i1 ≈ 0, the update vector vi will be very small, and

therefore its contribution in the subsequent smoothing step is
minimized. Update equations for the variances, σj , 1 ≤ j ≤ 3,
with similar principle to [42] can also be derived as:

σ
(m−1)
j =

∑N
i=1(w(m−1)

i0 + w
(m−1)
i1 )y2

ij∑N
i=1(w(m−1)

i0 + w
(m−1)
i1 )

. (24)

and:

σ
(m−1)
4 =

∑N
i=1 w

(m−1)
i0 y2

i4∑N
i=1 w

(m−1)
i0

. (25)

From these equations, (S(m−1)
0 )−1, (S(m−1)

1 )−1 are con-
structed in accordance with the definitions in (8). In order to
obtain the updated deformation field, we solve (22) and set4:

h(m)
i = h(m−1)

i − [W(m−1)
i +

I3×3

(δ(m−1)
i )2

]−1r(m−1)
i (26)

C. Estimation of q

Simultaneous estimation of the warping and tumor param-
eters is a highly ill-posed problem. In order to make a better
estimation of q, we propose to constraint the solutions in such
a way that the estimated tumor densities have the same mass
(expected probability) as the target real tumor in the patient
image. In particular given a target tumor PBM in the fixed
domain PTU (x), the following constraint is desired:∫

DF

PTU (x)dx ≈
∫
DM

Cq(x)dx (27)

The approximation is because we are only able to carry out
the forward tumor simulation, and no target tumor mass can

4In fact, we follow [43], [44] and in stead of addition, a composition update
rule is used i.e. : h

(m)
i = h

(m−1)
i ◦ vi, to achieve a faster convergence.
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be accurately specified before hand.5 The tumor growth is
pursued until the total mass of the created tumor density
exceeds the target mass minimally. The difference between
target and created mass values on atlas, depends on the size
of time step of the forward simulation process and in order
to minimize it smaller time steps are desired. In practice we
observed that choosing the time step of 5 days, is sufficiently
small to keep this error within the five percent of the target
mass.

V. IMPLEMENTATION DETAILS

For every patient, our preprocessing pipeline starts with
skull stripping and cerebellum removal of all modalities
(T1/T2/FLAIR/T1-CE). Next, these images are co-registered
using the FLIRT algorithm [45] to construct the set of the
voxel-wise feature vectors required by SVM classifier. In order
to train our SVM classifer, an expert radiologist in our center
was requested to delineate some representative regions of the
different tissue types for a couple of sample data sets as
described in section III-A. Using these ROIs, a non-linear
Gaussian kernel based SVM model is trained according to
principles illustrated in [38]. For the subsequent test subjects,
before application of the SVM, all modalities are histogram
matched to their corresponding modalities in the training
samples.

Prior to application of our deformable registration, the
computed PBMs of each patient and the atlas should be
linearly registered. Our atlas has the same image dimension of
256×256×128 and voxel size of 0.9375×0.9375×1.5 mm3

as utilized in [20]. In order to keep the consistency with this
optimal lattice specifications, we linearly register the computed
PBMS to our atlas using FLIRT. The affine transformed PBMs
obtained in this way, are then utilized as the fixed reference
feature images.

Our deformable registration approach, is implemented using
a multi-scale framework. In order to minimize the risk of
convergence to local optimums, registration starts with lower
resolutions and the computed deformation field after interpola-
tion is set as the initial field in the next level. A down sampling
pattern of 4:2:1 is used to construct the three-level pyramids
of both the estimated and patient PBMs.

In order to make faster tumor simulations, the set of
equations in (1) is solved on a lattice of 65× 65× 65 nodes,
down-sampled from the original atlas space [20]. The esti-
mated tumor density is then up-sampled to create the diseased
PBMs using the equations in (5). In order to find the best
tumor simulation parameters, the APPSPACK optimization
library launches several parallel MPI registration jobs assigned
with different set of tumor parameters on a Linux cluster
with Dual Intel Xeon 2.80 GHz CPUs. Each process returns
the registration cost value to APPSPACK until there is no
other point left in the queue as specified in Algorithm 1.
Furthermore, in order to reduce the computation burden this

5Another alternative would be to introduce a “soft constraint’ as a prior
information term to penalize the difference between the mass values. However,
that would have required a weighting parameter to be selected by user,
therefore it was avoided here.

procedure is only executed in the coarsest level of the pyramids
and for a few (ten) iterations. After estimation of the best q,
the registration is iterated with the finest resolution and more
number of iterations.

The initial seed location was set as the center of the search
span which is defined by the user. Affine registered patient
image to atlas, was utilized to evaluate the extent of the
tumor. We observed that the span of 4 × 4 × 4 cm3, was
sufficiently large to cover the major parts of the tumorous
bulks and to ensure that the estimated seed will be located
inside of the search span. In addition, the following search
span was utilized for the rest of other parameters whenever not
mentioned: 0.01 ≤ ρ ≤ 0.1, 0.01 ≤ p1 ≤ 12 , 0 ≤ p2 ≤ 0.02
and 1e−13 ≤ Dg, Dw ≤ 1e−7.

Registration module has been coded in C++ using Insight
Toolkit library, and the template class was based on the
contributed code of Vercauteren et al [44]. Inherited prop-
erties from this object oriented programming, allows us to
enforce different constraints on the deformation field such as
diffeomorphism (compositive update rule), simple smoothness
(additive update rule), linear elasticity and viscosity. In this
work we have been using diffeomorphic transformation model,
and in each iteration the computed deformation is smoothed
with a Gaussian kernel of σ = 2. This value is kept fixed
during all of our experiments.

VI. RESULTS

The registration accuracy is evaluated on both simulated
and real PBMs of glioma. The simulated PBMs are produced
by embedding a tumor on a synthetic brain image (shown
in Fig.5.a) made by deforming our standard atlas (shown
in Fig.3.a). The deformation field was exactly known and
was generated by Statistically Simulated Deformations (SSD)
introduced in [46]. The same standard atlas of Fig.3.a was
then registered to simulated patient PBMs, and the estimated
deformation field was compared to the ground truth which was
available to us using SSD.

To assess the registration performance of our real glioma im-
ages, we use the same subject independent evaluation method
utilized in [47]. In particular we measure Jaccard ratios to
evaluate the overlap between the warped labels from atlas,
and the reference labels obtained from our SVM classifier.
This is because, in general we found the glioma images to
be extremely complex (especially around the tumor) to allow
finding exact correspondences between the patient image and
the atlas. Therefore the evaluation method utilized in [18] was
not reliable in this study.A. Simulating Reference PBMs For Validation Purpose

For the purpose of measuring the registration accuracy using
SSD, reference (fixed) PBMs should be simulated. In a real
patient case, these are supplied through our SVM classifier
as shown in Fig.2. The difficulty arisen in simulating these
PBMs is because of the fact that we do not create edema
through application of our biophysical tumor model, whereas
in real images, edema is present. To fill out this gap we propose
an ad hoc formulation for edema, we emphasize that this is
only meant for data simulation for validation purposes and the
registration algorithm itself is independent of this formulation.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Using statistically simulated deformations (SSD) to create reference
feature images (PBMs). (a) Sample generated T1 image by SSD using Fig.3.a
as the base template, the marker indicates the seed location designated to
create reference (fixed) PBMs: (b) created tumor density map F1; (c)-(e)
F2, F3 and F4: tissue probability maps with mass-effect and soft-masking by
the created tumor density map in (b), (f) simulated edema F5 using (28).

Fig. 6. Registration results using simulated patient PBMs; Left: The patient
T1 image corresponding to the target PBMs shown in Fig.5(b)-(f) overlayed
by the target tumor density, Right: registered atlas overlayed by the warped
tumor density.

Edema simulation is based on the observation that the
probability of finding the edema is maximized somewhere in
between the tumor bulk (i.e. ,Cq = 1.0) and the healthy tissue
(i.e. ,Cq = 0.0). Therefore the simulated PBM of edema is
proposed to be in the form of Cq(1 − Cq), which has the
maximum on Cq = 0.5. We also assume that the edema
should be confined into white matter. Given these intuitions,
the proposed set of equations to simulate our reference PBMs
for validation experiments is very similar to (5) but includes
the edema’s PBM:

Fsim0(x) = Cq0(x)
Fsim1(x) = PCSF (hssd ◦ u(x))(1− Cq0(x))
Fsim2(x) = PGM (hssd ◦ u(x))(1− Cq0(x))
Fsim3(x) = PWM (hssd ◦ u(x))(1− Cq0(x)− Cq0(1− Cq0))
Fsim4(x) = PWM (hssd ◦ u(x))(Cq0(1− Cq0)) (28)

where Fsim4 stands for edema’s PBM, u : ΩF → ΩF is

(a) (b)

(c) (d)

Fig. 7. 2D profiles of the cost function versus estimated tumor parameters
(q). Sensitivity across: (a)tumor seed coordinates, (b)mass-effect parameters,
(c)diffusion coefficients, (d)proliferation coefficient. The estimated parameters
are reasonably around the target values. The largest sensitivity is achieved
versus change in the tumor seed location.

the mass-effect deformation estimated by our tumor generator
model [20], q0 is the tumor parameter set used to create the
tumor density map Cq0 and u, and hssd : ΩF → ΩM is
the statistically simulated deformation learned from a bank
of normal-to-normal warping sets [46]. Note that these PBMs
sum up to one, as required for an actual set of tissue probability
maps in a real patient. We use FAST [37], to segment a T1
template atlas image given in ΩM , into three different labels,
and compute the posterior probability map for each tissue
label, i.e. PCSF , PGM and PWM . The computed tissue maps
are then plugged in (28) to hand in the simulated reference
PBMs. As seen in (28), the data in atlas (PCSF , PGM and
PWM ) is linked to the reference feature images, by the
compositive mapping of hssd ◦ u(x). Because both the mass
effect u and hssd are computed, the ground truth for the total
deformation field is known and can be used for validation
purposes. A sample set of the constructed PBMs using (28)
has been given in Fig.5.

B. Evaluation Using Simulated PBMs by SSD

We simulated five sets of reference PBMs and evaluated
both registration accuracy and estimated tumor parameters
in accordance with principles illustrated in section VI-A.
Different seed locations with various diffusion coefficients
were utilized to created these reference PBMs. As a result, they
were different in both tumor locations and diffusion patterns. It
should be emphasized that the same template used by SSD to
create the reference PBMs in (28) , is utilized to create moving
PBMs as illustrated in section III-B. Estimation of the best
tumor parameter set and deformation field is achieved using
the procedure in Algorithm 1 and the principles illustrated in
section IV-B. A sample registration result is shown Fig.6, in
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which the target T1 image is made by warping the template
image in Fig.3.a through hssd ◦ u(x). The result shows a
good match between the target and warped images and tumor
densities. The color bar aside indicates the region covered by
red color is fully replaced by the tumor, while the rest of
spectrum is used to indicate diffusion and infiltration.

The five sets of tumor parameters used to create the
synthetic reference PBMs, have been summarized in Table
I. Each row corresponds to one experiment specified by a
unique q0 in (28). In these experiments, we chose p1 = 0
and ρ = 0.025 during both simulation of reference PBMs
and registration. This setting corresponds to have u(x) = x.
Therefore the registration accuracy can be directly computed
by comparing the estimated deformation field to the SSD cre-
ated deformation, i.e. hssd. Table II, summarizes the estimated
tumor parameters. It shows that the tumor seeds in patient
and the atlas are registered with high spatial accuracy, since
the estimated seed locations in atlas are mapped very closely
to the patient’s tumor seed locations. (To see this compare
the xc, yc, zc in corresponding rows in Table I). However, the
estimated diffusion coefficients are different from the values
in Table I utilized to simulate the reference patient PBMs.
This is because, the tumor growth PDE model in (1) has
been solved in different domains (patient vs. atlas), which
have different portions of GM, WM and CSF. Therefore it
is not possible to estimate the same diffusion parameters.
Registration accuracy in terms of root-mean-square error, has
been summarized in Table III. As shown, the rms errors are
evaluated on three zones. These regions are delineated by
thresholding the reference tumor density map, i.e. Cq0 , in
two different levels, leaving the entire image domain into
far, intermediate and near zones (w.r.t tumor location). For
example, the third column corresponds to rms registration
error on and in the vicinity of the tumor, where the tumor
density is high. The last row is the column wise average of
reported errors. As seen, the average rms registration error
on the far zone (healthy areas) is comparable to the diagonal
size of the image voxels (2.1 mm), and deteriorates on the
intermediate and near zones (with no significant differences
on the averages). The the maximum rms of (3.25 mm) can
be found in the near zone, and falls within the diagonal size
of the voxel size used for tumor simulation (4.8 mm). It
should be pointed out that we do not compare our method
to ORBIT using the images created by SSD [46]. The reason
is because SSD uses HAMMER [12] generated deformation
fields as training samples. Those deformation fields are easily
captured by ORBIT, since ORBIT has been build on the basis
of HAMMER (they are basically same registration procedures
on healthy parts of brain). Therefore, the simulated images are
highly biased in favor of ORBIT, making such comparison not
to be fair.

C. Sensitivity of The Cost Function W.R.T q

In order to test the potential of optimizing the tumor growth
parameters using the proposed optimality criterion, we have
plotted the total cost as a function of the error in estimating
q. We should emphasize that for an inter-subject registration

Table I
COORDINATES OF THE TUMOR CENTERS (IN ΩF ) AND THE DIFFUSION
COEFFICIENTS USED TO SIMULATE FIVE SETS OF REFERENCE PBMS.

Set no. xc yc zc dw dg

1 101.493 63.4347 79.3623 1e-8 0.5e-8

2 147.798 153.792 108.928 2e-8 0.5e-8

3 101.499 116.723 107.319 1e-8 0.5e-8

4 140.288 99.9364 122.25 2e-8 0.5e-8

5 105.94 150.00 101.81 1e-8 0.5e-8

Table II
ESTIMATED TUMOR CENTERS (MAPPED TO ΩF ) AND DIFFUSION

COEFFICIENTS OF THE FIVE SIMULATED PATIENTS PBMS
CORRESPONDING TO TABLE I

Set no. xc yc zc dw dg

1 101.5 62.7969 79.0937 0.65e-8 .5e-8
2 148 153.906 110.0 1.4e-8 1e-8
3 101.547 116.25 107.094 0.5e-8 0.5e-8
4 139.75 100.453 122.094 2.21e-08 0.505e-8
5 105.1 149.23 100.94 1.4e-08 0.505e-8

Table III
REGISTRATION ACCURACY ( IN MM) W.R.T GROUND TRUTH

DEFORMATION IN THREE DIFFERENT ZONES OF TUMOR DENSITY.

C ≤ 1e− 5 1e− 5 ≤ C ≤ 0.5 0.5 ≤ C ≤ 1
1 2.49 3.1 2.18
2 2.638 3.04 3.58
3 2.67 3.14 3.08
4 2.37 3.28 3.73
5 2.5 3.18 3.63

Avg. 2.53 3.14 3.25

Fig. 8. Convergence plots of four real sample subjects. Vertical and horizontal
axes indicate the cost value and number of minimizing registrations. Each
panel corresponds to a single subject and represents the minimization of the
cost function with two different search span for tumor parameters.

task, because the PDEs introduced in (1) should be solved in
two different domains, it is not possible to estimate exactly the
same tumor parameters. Therefore, the results in this section
have been obtained using an intra-subject registration task. To
that end, we only simulate a mass-effect on the template, i.e.
, we put hssd(x) = x in our estimated PBMs in (28), and
try to estimate the original q0. The computed cost values
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Fig. 9. Plots of jaccard values for different segmentation labels enumerated as 1:L-Vent, 2:L-CSF, 3:TUM, 4:L-GM, 5:G-Vent, 6:G-CSF, 7:G-GM; Left:
mean values, Right: scattered samples. The red and blue colors correspond to ORBIT and our method’s result.

Table IV
ESTIMATED VALUES OF THE TUMOR PARAMETERS q CORRESPONDING TO

FIG.8 USING APPSPACK

Subj. xc yc zc p1 ρ dw dg

1 13.2 14.0 9.0 .05 6.2 6e-9 1.5e-9
13.2 14.5 9.0 .03 7 8e-9 5.5e-9

2 11.5 10.8 8.9 .06 6 1.5e-10 5e-13
11.3 11.4 9.4 .06 5 1.5e-11 1e-12

3 11.0 11.0 12.4 .01 5.0 1.5e-9 1e-10
11.0 11.0 12.7 .01 7.5 1.5e-9 1e-10

4 14.3 7.2 9.8 .04 3.3 1e-7 1.5e-9
14.3 7.2 9.8 .02 3.5 5e-8 1.0e-9

Table V
JACCARD RATIOS OF VARIOUS TISSUE LABELS CORRESPONDING TO

CONVERGED LOCAL MINIMUMS IN FIG.8

Subj. E(×107) L-Vent Tum L-GM L-CSF
1 -2.29 54.5% 38.2% 57.19% 20.0%

-2.30 55.1% 42.2% 56.13% 24.0%
2 -2.05 65.5% 48.6% 60.0% 20.9%

-2.08 65.7% 47.6% 60.0% 25.2%
3 -2.86 60.0% 38.4% 49.0% 17.4%

-2.90 61.2% 40.4% 49.7% 19.4%
4 -2.262 56.5% 68.9% 67.0% 18.5%

-2.267 58.6% 72% 68.9% 18.9%

are then interpolated within the 2D planes intersecting the
estimated q, as shown in Fig.7. As shown, the cost function in
general remains locally convex with regard to the most of the
parameters and they have been estimated reasonably around
the target values (central values of the indicated ranges). As
seen in panels (b) and (d), there are some fluctuations around
the target values. We believe that this is because of lacking
edema as a part of our estimated moving feature images,
and also numerical errors arisen when the registration errors
are very small. In addition, Fig.7 indicates that the largest
sensitivity is achieved versus the change in the tumor seed
location, and this is followed by diffusion coefficients, mass-
effect parameters and proliferation coefficient.

D. Robustness and Convergence Analysis

Because of the larger number of tumor parameters (com-
pared to ORBIT), and the combination of two different
optimization algorithms the overall robustness of the algo-
rithm was of major interest. We evaluated the robustness
and convergence behavior of the algorithm using four real

glioma patients. For every individual a pair of registration
experiments with different search spans of tumor parameters q
was performed. To that end, the search span for q in the first
experiment was enlarged by 50 % in every dimension to define
a new search span for the second experiment. Of especial
interest was to evaluate that how the converged values of q are
different from each other. For an ideally robust estimation with
a global minimum, those values should be same. However, our
experiments showed that the cost function was not convex and
therefore different tumor parameters were estimated. For every
individual each panel in Fig.8 shows that how the cost values
drop to different local minimums. Note that the horizontal
axis counts the number of “successful’ registrations in which
APPSPACK have found a new minimizing value. For every
patient the corresponding converged tumor parameters using
different search spans of q, have been listed in a single row of
Table IV (because of moderate sensitivity on p2, its value was
fixed to zero in these experiments). The comparison of the
converged tumor parameters for each patient shows that the
estimated tumor center locations are minimally different com-
pared to e.g. diffusion coefficients, and they can be estimated
more robustly. For the third subject, the dimensionality of the
search space was reduced by fixing the diffusion coefficients,
therefore optimization was done w.r.t other tumor parameters.
Consequently, overall a more robust estimation was achieved
on the rest of parameters.

In addition, the impact of convergence into different local
minimums on the registration errors has been studied by
measuring the Jaccard overlap ratios in Table V(refer to
section VI-E1 for definition and further details). The table
indicates that lower cost values (E in the second column)
generally imply larger overlap ratios on various tissue labels
and therefore a better registration quality.

E. Registration of Real Glioma Images

Fifteen multi-channel data sets of real gliomas with different
grades, and sizes were selected for registration with the normal
template (atlas) and the comparison was made to ORBIT [19].
The preprocessing step and the implementation details are
illustrated in section V.
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(a) (b) (c) (d)

Fig. 10. Registration results with the same atlas shown in Fig.3.a. The
blank spaces in between the rows separates the patients. Columns from left
to rigth: (a) T1 fixed reference images, (b) Overlay of the extracted PBMs of
GM, and TUM, (c) Warped template images to the reference using ORBIT
(overlayed by the estimated tumor label), (d) Warped template using our
algorithm (overlayed by the warped tumor density map originally generated
in the atlas space). The markers in the first column around the tumor indicate
some location where our method has had a better performance in comparison
to ORBIT.

As the reference input, ORBIT requires a label image which
should be created by segmentation of the patient image. For
that purpose the hard segmentations (tissue labels) obtained
through our SVM was used for each subject. Therefore, the
advantage of using multi-parametric images for segmentation
has also been utilized in ORBIT. Moreover, since some of
our glioma images contain large portions of edema, and the
ORBIT does not handle this type of tissue label, we replace
edema by WM. This is based on our hypothesis that edema

(a) (b) (c) (d)

Fig. 11. Continued from Fig.10

only spreads into white matter. Therefore the performance
of ORBIT was increased substantially. Other details and
parameters were same as in [19]. In terms of computational
cost, having the tumor parameters our registration method runs
faster, however since we estimate 8 parameters, versus four
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Table VI
MEAN JACCARD VALUES OF DIFFERENT SEGMENTATION LABELS.

SIGNIFICANT DIFFERENCES ARE INDICATED IN BOLD (P-VALUE ≤ 0.05).

Label Our proposed method ORBIT
L-Vent 57.38 46.77
L-CSF 28.54 15.69
TUM 59.38 53.31
L-GM 50.85 39.77
G-Vent 62.54 53.15
G-CSF 40.0 18.85
G-GM 57.0 47.62

parameters in ORBIT, the total computation cost stays similar
to ORBIT and depending on the tumor size may vary between
(6 ∼ 14h).

1) Quantitative Assessment: As illustrated in section VI,
the complexity of glioma images, especially around the tu-
mor, makes the task of finding of corresponding landmarks
between the patient image and the atlas difficult and unreliable.
Therefore the evaluation method utilized in [18] was not a
robust measure for this study. In this paper similar to [47], the
rater independent Jaccard ratio, measuring the overlap between
target (from SVM) and warped labels from atlas, has been
utilized for quantitative evaluations. More specifically for each
label k we measure:

JRk =
n(Tk ∩Wk)
n(Tk ∪Wk)

(29)

where n represent the number of voxels in a set, Tk is the set
of voxels that have been labeled as k in patient, and Wk is the
set of voxels obtained by warping of voxels originally labels
as k in atlas.

In order to be discriminative on performance for local
(tumor vicinity) and global regions (rest of the healthy por-
tions), the warped tumor density created in atlas space, was
segmented by a threshold of 1e−5 to divide the patient
image space into two separate regions denoted as local (L)
and global (G). Next, the intersections of these regions with
SVM segmented GM,CSF and TUM , along with manually
segmented ventricles V ent were used to create different target
labels. Note that the normal part of the WM (excluding edema)
is not used in the quantitative evaluation. This is because we
do not model edema in atlas, and WM in atlas is in fact a
mixture of edema and white matter where we do not have a
border to separate them.

The measured jaccard ratios for all of our fifteen test sub-
jects are shown using bar and scatter plots in Fig.9. In addition
a paired t-test was used to identify statistically meaningful
differences between measurements. Table VI summarizes the
mean JR measures made by averaging though all test subjects
both for ORBIT and our method. As seen our method outper-
forms the ORBIT in most of the labels, by minimum margin
of 6.3% on tumors and maximum 21.15% on G-CSF.

2) Qualitative Assessment: In addition to quantitative re-
sults based on the label overlaps, the registration performance
of our method is also visually evaluated. The registration
results of eight test subjects of different grades of glioma, with
the normal atlas and its comparison to ORBIT are illustrated in
Fig.10 and Fig.11. The normal atlas in these experiments was

the same atlas in Fig.3 used in our previous sections. From
left to right, first column show the T1 images (other modalities
are not shown), the second column show the PBMs (reference
tissue probability maps) of tumor and gray matter, obtained
through our SVM classifier. This is followed by the ORBIT
and our proposed method’s results. Similar color bar in Fig.6
has been utilized to overlay the warped tumor density on the
warped atlas images in our method. It is important to note
that the regions overlayed by red are fully replaced by the
tumor. The presence of other structures in these areas, denote
how they have been captured by the tumor, and should not
be taken as their real existence. This complexity in rendering
the results is indispensable, because we had no clues on the
change of image intensity levels by presence of tumor. Also,
since ORBIT does not generate diffused tumor densities, only
the estimated tumor labels are presented. Green markers in
the first column indicate some locations where our method
has achieved a better similarity in comparison to ORBIT.

In general, very good similarities between the warped atlas
overlayed by the warped tumor densities, and the patient
images can be observed for all cases using our method. Also,
the warped tumor densities resemble the reference PBMs, and
overall match the pathological areas.

The patients indicated in Fig.10 have been diagnosed with
various grades of gliomas and the tumors with infiltration.
In the first sample ORBIT has captured the infiltrated tumor
parts as a bulk mass, and some unrealistic mass-effect has
been generated (top rows in panel c). Whereas the warped
tumor density using our method clearly shows infiltration, and
registered template resembles the patient image. The second
example, indicates a case where the infiltration and the mass
effect have been underestimated by ORBIT, whereas using
our method the target tumor and the mass effect have been
captured in a better way. The third and forth (separated by
white spaces from top) samples in Fig.10 indicate patients with
lower grades of gliomas and smaller tumor bulks. The axial
and sagital slices of the third and forth cases in panel (c),
shows the ORBIT’s failure to capture some parts of the tumor
(as no tumor label is observed in the corresponding slice),
whereas the result of our method shows some tumor diffusion,
matching corresponding reference tumor PBM and a better
registration performance has been achieved using our method
(sample locations have been marked in the first column).

The first three rows on the top of Fig.11 show an example
patient, in which the ventricles have been heavily involved. As
seen, ORBIT fails to capture the tumor pattern correctly, as
the ventricles are not squeezed by its estimated tumor, whereas
our method has a better performance since the created tumor
resembles the patients tumor and ventricles indicate the mass
effect. In the last example Fig.11 (bottom rows), tumor is less
infiltrative and has a bulk specified by the enhancement in
the borders. ORBIT has over estimated the mass-effect and
excessively pushed the ventricles, whereas such a pattern is
not observed in our result and the ventricles are more similar
to those of the patient.
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VII. CONCLUSION AND FUTURE RESEARCH ORIENTATION

A deformable registration algorithm for glioma images
with a normal atlas(template) is proposed. We utilized multi-
parametric imaging techniques to compute the tissue prob-
ability maps of the patient with an expert trained Support
Vector Machine. This step was critical to provide matching
information on and around the tumor. Using fuzzy probabilistic
maps is also especially important for gliomas, because those
tumors are diffusive and therefore every voxel is expected to
include some tumor portion. On the atlas, we used reaction-
diffusion equation to simulate a tumor growth and estimate
the mass-effect. Normal probability maps of the healthy atlas,
were modified to reflect the tumor invasion, and registered to
their corresponding probability maps in the patient image. In
the atlas, since we do not model the edema, which is assumed
to be confined into the white matter, the edema’s probability
map (PBM) remains as an unobserved additive component
with the simulated white matter PBM. Therefore in edema
region, the information of the white matter PBM is ignored
and the registration is achieved by matching of CSF, gray
matter and tumor PBMs between the patient and the tumor
embedded atlas. Therefore we believe that the registration
quality is better than the case in which the whole edema
region is masked out from driving the registration ( [23] and
[24]). Such unrealistic modeling issues such as the lack of
edema in the estimated PBMs on the atlas, is handled using
EM algorithm, that estimates the spatial transformation and
simultaneously segments the edema in the patient image.

The tumor parameters such as seed location, mass-effect co-
efficients, proliferation coefficient and diffusion parameters are
estimated through APPSPACK [41]. The performance of the
method was evaluated using both statistically simulated brain
images, with known deformation field, and the real glioma
images. Our experiments show that the proposed method has
a very good registration performance, and the warped atlas
resembles the target patient images.

To be accurate on registration errors, we used statistically
simulated brain images and PBMs as target patient images.
This allowed us to compare our computed deformation fields
to the ground truth deformations, available from our simu-
lations. Table III summarizes mean square error results, and
indicates the average of registration accuracy is in the order
of one voxel size.

Comparison was made to ORBIT [19], this comparison
was chosen especially because, for tumor images ORBIT has
shown to outperform other registration methods. Both of our
qualitative and quantitative results indicate that our method has
a better performance, especially for highly infiltrated tumors.
Examples for this claim can be found in Fig.10 and Fig.11,
where some tumors indicate significant infiltration.

For real glioma images, our quantitative comparison of
registration efficiency was based on the tissue overlap ratios
as utilized in [47], [48]. Jaccard ratio was especially pre-
ferred mainly because it allows rater independent evaluation
of registration, and the complexity of the images did not
allow reliable landmark localization. To be more specific,
JRs were measured in both local (w.r.t tumor) and global

(considered as healthy) regions as shown in Table VI. The
table demonstrates that our proposed method has a better
performance compared to ORBIT. It should be pointed out that
the main objective of such table is to establish a basis for the
comparison and the reported values can be further improved
upon having a better quality on SVM classifier. In particular,
poor overlap ratio on CSF, is partly because those structures
are very tiny and therefore the overlap ratio is sensitive to
small displacements. From our t-test scores, we notice that
the improvement of registration in areas close to tumor was
not equally significant as the rest of the brain. This is because,
the current tumor growth models employed in both registration
methods, have a limited ability to simulate anisotropic tumor
patterns as they are observed in real glioma images. Such
inadequately realistic tumor simulation causes poor matches
and therefore although we have achieved an improvement (6%)
over ORBIT, the difference is not statistically significant. In
fact, the performance of the proposed method depends on the
target tumor shape of the patient, and is the best for blob-like
tumors. We expect upon integration of a better modeling, e.g.
by fusion of DTI tensors for anisotropic tumor propagation
along the white matter fiber tracts as done in [21], the quality
of the registration to improve.

In addition, the current framework does not consider pa-
tients with multiple tumor bulks. In reality, metastasis might
occur in glioma which results in several disjointed tumor areas.
For such cases, several tumor seeds can be embedded in the
atlas, however, this increases the number of parameters to be
estimated and can result in a significantly longer processing
time.

Although not covered in this paper, the sensitivity analysis
of the registration quality w.r.t patient PBMs is an important
issue that should be addressed. We acknowledge that having
a robust and accurate classification of the patient images,
increases the registration quality. However, for noisy segmen-
tations a compromise between the robustness and sensitivity
of the algorithm can be established by adjusting the λ. 6

One limitation in computing tissue probability maps is that,
the current imaging modalities have intrinsic limitation to
detect lower tumor cell densities [49], [50]. As a result, we
acknowledge that with current modalities the computed PBMs
on infiltrated areas might not be accurate. One interesting
branch of future research is to enhance the accuracy of the
measured PBMs by fusion of other information sources such
as spectroscopies made around the tumor.

In the current form of our work, the edema is not directly
simulated, mainly because it contributes to more complexity
of our simulations, and increases the number of total required
parameters, which would increase the computational cost in
turn. Integration of edema modeling (such as one proposed by
Nagashima et al [39]) can be considered in the next steps. Also
in the current implementation, the classification of the subject

6To see this, note that regions with incorrect segmentation labels re-
sult in poor match to atlas and therefore are captured as outliers where
w

(m−1)
i0 , w

(m−1)
i1 ≈ 0 and ||vi|| ≈ 0. In such locations the registration

is driven by the neighborhood information. Since w
(m−1)
i0 , w

(m−1)
i1 are

inversely proportional to λ, increasing the λ makes the registration more
robust but less sensitive (w.r.t patient PBMs).
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multi-modality images is not updated during the registration
process. Given an estimate of the registration of the atlas
and tumor parameters, one can consider further refining the
classification of the subject. The natural way for that purpose
is to update the segmentation labels in the E step of our
algorithm. This extension, however, was not initially consid-
ered since we wanted to favor the user’s knowledge to be
more specific on making segmentations of tumor and edema.
The developed registration package is available for download
via the homepage of Section of Biomedical Image Analysis ,
University of Pennsylvania: https://sbia-svn.uphs.upenn.edu/
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APPENDIX A
PROOF OF UPDATE EQUATIONS (18)

To compute the derivative according to (17), we first com-
pute the differential w.r.t h(xi) and keep variances σi fixed at
the current estimate, i.e σi = σ

(m−1)
i . We only consider those

terms in (15) which involve h(xi):

Qq(Φ|Φ(m−1)) =
N∑
i=1

{w(m−1)
i0 (yq

i )t(S0
(m−1))−1yq

i

+w(m−1)
i1 (yq

i )t(S1
(m−1))−1yq

i } (30)

by re-arranging the terms:

Qq(Φ|Φ(m−1)) =
N∑
i=1

{(yq
i )t[w(m−1)

i0 (S0
(m−1))−1

+w(m−1)
i1 (S1

(m−1))−1]yq
i } (31)

Let:

R(m−1)
i = [w(m−1)

i0 (S0
(m−1))−1 + w

(m−1)
i1 (S1

(m−1))−1]

using the definition of directive differential operator < ·, · >
in (17) and its linear properties we have:

< ∂Qq(Φ|Φ(m−1)), ψ >=
N∑
i=1

< (yq
i )tR(m−1)

i yq
i ,vi >

and using (20):

< (yq
i )tR(m−1)

i yq
i ,vi >= (32)

(yq
i

(m−1) + (∇M ◦ h(m−1)
i )tvi)t

R(m−1)
i (yq

i
(m−1) + (∇M ◦ h(m−1)

i )tvi)

−(yq
i

(m−1))tR(m−1)
i yq

i
(m−1)

where ∇M has been defined in (20). Keeping terms with up
to the second order of ||vi||, (32) can be summarized as:

< (yq
i )tR(m−1)

i yq
i ,vi >= (33)

vi
t[2∇M ◦ h(m−1)

i R(m−1)
i yq

i
(m−1)+

∇M ◦ h(m−1)
i R(m−1)

i (∇M ◦ h(m−1)
i )tvi]

Replacing (33) in (32), the right hand side of (17) can be
written as:

< ∂Qq(Φ|Φ(m−1)), ψ >=
N∑
i=1

vi
t.{r(m−1)

i + W(m−1)
i .vi} = 0

(34)

where W(m−1)
i and r(m−1)

i , have the same definitions in (19,
21). Since for every test function ψ defined in ΩF the above
equality should hold true we must have:

r(m−1)
i + W(m−1)

i .vi = 0. (35)

which is solved for the vi.

NOMENCLATURE

(δ(m−1)
i )−2 velocity vector norm penalizer at voxel i and

iteration m
λ a small constant employed for outlier detection
ψ arbitrary test function used to derive the update equa-

tion
h(m−1)
i deformation field vector at voxel i and iteration m

q the set of tumor parameters needed for tumor simula-
tion

r(m−1)
i the residual vector used in linear system at voxel i

S−1
0 ,S−1

1 variance matrices of class 0 and 1
u the mass-effect deformation field
vi the velocity field vector at voxel i
W(m−1)

i the coefficients matrix of linear system at voxel i
yq
i observation vector at ith voxel in ΩF made by differ-

encing target and warped PBMs
Yq the set of N i.i.d observation difference vectors
ΩF domain of fixed (patient) PBMs
ΩM domain of moving (atlas) PBMs
Φ set of unknown parameters to be estimated by EM
π0, π1 a priori probability maps for class 0 and 1
ρ proliferation coefficient
σ−2
j variance of jth difference channel
Cq the simulated tumor density map
D0,D1 subregions of ΩF
DWM , DGM diffusion coefficients of white and gray matter
f0, f1 probability distribution functions
Fj jth fixed (patient) PBM
Fsimj jth simulated target PBM for the purpose of validation
Mq
i ith moving PBM generated in atlas.

N the number of voxels in ΩF
p1, p2 mass-effect parameters
w

(m)
ik robust posterior probability of voxel i belonging to

class k at iteration m
x, y, z tumor seed coordinates
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