
Performance Optimization for the K Nearest-Neighbor
Kernel on x86 Architectures

Chenhan D. Yu*†

chenhan@cs.utexas.edu

Jianyu Huang*

jianyu@cs.utexas.edu

Woody Austin*†

austinwn@utexas.edu

Bo Xiao†

bo@ices.utexas.edu

George Biros†

gbiros@acm.org

*Department of Computer Science
†Institute for Computational Engineering and Sciences

The University of Texas at Austin
Austin, TX 78712

ABSTRACT
Nearest neighbor search is a cornerstone problem in compu-
tational geometry, non-parametric statistics, and machine
learning. For N points, exhaustive search requires O(N2)
work. There are many fast algorithms that reduce this
complexity to O(N logN) both for exact and approximate
searches. The common kernel (the kNN kernel) in all these
algorithms solves many small-size (⌧ N) problems exactly
using exhaustive search.

We propose an e�cient implementation and performance
analysis for the kNN kernel on x86 architectures. Currently,
the most e�cient method is to first compute all the pairwise
distances using (highly optimized) matrix-matrix multipli-
cation and then use a max heap to select the neighbors. We
propose a di↵erent approach. By fusing the distance calcula-
tion with the neighbor selection, we are able to utilize mem-
ory throughput. We present an analysis of the algorithm and
explain parameter selection. We perform an experimental
study varying the size of the problem, the dimension of the
dataset, and the number of nearest neighbors. Overall we
observe significant speedups. For example, when searching
for 16 neighbors in a point dataset with 1.6 million points
in 64 dimensions, our kernel is over 4⇥ faster than existing
methods.

1. INTRODUCTION
Problem Definition: Given a set of N reference points

X := {x
j

}N
j=1 and a query point x in a d-dimensional space,

the nearest neighbor problem aims to find the setN
x

of the k
nearest neighbors of x. That is, N

x

is a set of points with car-
dinality k such that 8x

p

2 N
x

we have kx�x

j

k2 � kx�x

p

k2,
8x

j

2 X\N
x

. When we want to compute the nearest neigh-
bors of all points x

j

2 X , the problem is called the all-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SC15 November 15–20, 2015, Austin, Texas, USA

Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

nearest-neighbor problem. In many applications, (e.g., im-
age datasets, streaming datasets) there are frequent updates
of X and computing all nearest-neighbors fast e�ciently is
time-critical.

Significance: The all-nearest-neighbor problem is widely
used in non-parametric statistics and machine learning. It is
used in cross-validation studies in supervised learning, con-
struction of nearest-neighbor graphs for manifold learning,
hierarchical clustering, kernel machines, and many other ap-
plications [9]. For very large N , the all-nearest-neighbor
problem is prohibitively expensive since it requires O(N2)
distance evaluations. In low dimensions (say d < 10), reg-
ular spatial decompositions like quadtrees, octrees, or KD-
trees can solve the kNN problem using O(N) distance eval-
uations [25]. But in higher dimensions it is known that tree-
based algorithms end up having quadratic complexity [30].
To circumvent this problem, we must abandon the concept
of exact searches and settle for approximate searches. State-
of-the art methods for the kNN problem in high dimensions
use randomization methods, for example, tree-based meth-
ods [6, 15,21,31] or hashing based methods [1, 2].

The kNN kernel: The gist of all these approximate
search methods is the following. Given X of size N , we par-
tition it into N/m groups of size m⇥n (with m query points
and n reference points—both from X) and solve N/m exact
search kNN problems for the m query points in each group,
where n = O(m) depends on the details of the approximate
search method. We iterate using a di↵erent grouping and
update the nearest neighbor lists until convergence. The
kNN kernel is the exact search of the k nearest points of
m query points given n reference points (where both sets of
points are selected from X). The kNN kernel appears not
only in the approximate search algorithms, but also in the
lower-dimensional exact search algorithms.

State-of-the-art for computing the kNN kernel: The
kernel can be split into two parts: (1) the distance com-
putation between the m query points and the n reference
points and (2) the neighbor selection. State-of-the art im-
plementations of the kNN kernel use this decomposition. In
general, the majority of kNN implementations use the Eu-
clidean distance metric (i.e. `2 norm). In that case, the pair-
wise distance can be computed using the GEMM kernel from
any BLAS library [7]. This is done by expanding kx

j

�x

i

k22

k Method d=16 d=64 d=256 d=1024

16
ref 50 53 72 149
GSKNN 5 9 28 93

512
ref 136 141 125 234
GSKNN 69 74 60 159

2048
ref 306 310 326 402
GSKNN 267 268 285 358

Table 1 Performance gains using GSKNN. As a highlight, we report
the 8-node execution time (seconds) using a MPI-based random-
ized KD-tree code and demonstrate the performance improvements
observed when switching from a GEMM-based scheme to GSKNN. The
outer solver that calls GSKNN is described in [31]. Each random KD-
tree has m points per leaf. The reference results “ref” correspond
to the GEMM-based implementation. We used N = 1, 600, 000 and
m = 8, 192 and varying values of d and k. The time spent in the
GSKNN kernel is over 90% of the overall time.

as follows.

kx
i

� x

j

k22 = kx
i

k22 + kx
j

k22 � 2xT

i

x

j

(1)

Computing kx
i

k22 scales as O(m + n). The inner product
terms x

T

i

x

j

can be computed by a GEMM call that, depend-
ing on the problem size, can achieve near peak performance;
the complexity of this calculation is O(mnd). Once the dis-
tances have been computed, we must perform the nearest-
neighbor search for each query point. The best known algo-
rithm to select the k nearest neighbors utilizes a maximum
heap selection, which requires O(n) in the best case and
O(n log k) in the worst case. Thus, the overall time com-
plexity of a kNN base case is O(mnd+mn log k). However
the constants in front of these two terms can vary greatly
depending on the floating point operation capability, the
specific GEMM implementation, and the memory latency. As
we discuss in §2, the kNN search can be memory bound, de-
pending on the sizes of m, n, d and k. When d is large (say
d > 512) the current practice of using GEMM is optimal. But
when d is small (say d < 512), using GEMM for the kNN can
be suboptimal. The dimensionality of many datasets used
in practice (e.g., [18]) ranges in the O(1)–O(1000) interval.
In addition, the performance of the kernel crucially depends
on the number of nearest neighbors k; if k is relatively small
(as is in many applications) GEMM may not be optimal. We
can do much better than just using GEMM.
Contributions: Our key insight is that kNN only re-

quires a portion of the calculated pairwise distances to be
stored; most of the pairwise distances can be immediately
discarded once we are confident that they are not one of the
k nearest neighbors. In the best case, we get all of the kNN
in the first k distance evaluations and we only need to store
an m ⇥ k matrix rather than an m ⇥ n matrix. We have
developed a new kernel for x86 architectures that exploits
this observation.

• We introduce GSKNN1 (General Stride k Nearest Neigh-
bors), a kNN kernel that can be directly coupled to both
exact and approximate search algorithms to compute ex-
act searches for a number of small (compared to N) m⇥n

problems (§2.3). GSKNN embeds the neighbor searching,
square distance evaluation and coordinate collection in-
side di↵erent levels of GEMM to achieve greater e�ciency.
The kernel employs vectorization (§2.4) and multithread-
ing (§2.5).

• We explore performance optimization and examine the

1
https://github.com/ChenhanYu/rnn

memory access at the di↵erent stages of our kernel; we
propose a performance model (§2.6) that can be used to
explain the result and to select tuning parameters. We
demonstrate the performance of the kernel for a wide
range of m, d and k (§4).

Inspired by the BLIS library [28, 29], GSKNN improves the
cache performance by blocking and memory packing. Addi-
tionally, instead of doing the heap selection after the GEMM

call, the selection can be moved inside GSKNN’s distance cal-
culation kernel, which has six layers of loops allowing for
multiple ways to combine distance calculations and neigh-
bor selection in a single step. We have also implemented a
vectorized max heap [17] that further improves the perfor-
mance of the kernel. Overall, GSKNN achieves high arithmetic
intensity. In Table 1 we show an example of the di↵erence
GSKNN can make for the all-nearest-neighbor problem. Note
that whereas the GEMM-based algorithm is limited to the Eu-
clidean and cosine distances, the new GSKNN kernel applies
to any `

p

norm 0 < p 1 (§2.4).
Related work: We do not review the vast literature

on algorithms for the all-nearest-neighbor problem since the
kNN kernel is a plugin for all these methods. We focus our
attention on the kNN kernel and its use in existing nearest
neighbor packages. To the best of our knowledge, there are
no other studies on high dimensional brute force kNN with-
out using GEMM as it is defined in BLAS. There is work on
GPU architectures but not on x86 platforms. Earlier work
involving CUDA kNN [10] was shown to not be competitive
with the GEMM-based cuKNN-toolbox [27]. On x86 platforms,
the only package we found that uses the GEMM-based kernel
is our version of the randomized trees and locality sensitive
hashing [31]. Other packages such as FLANN (Fast Library
for Approximate Nearest Neighbors) [23], ANN (Approximate
Nearest Neighbors) [22] and MLPACK [5] compute the pairwise
distances per query point using a single loop over all refer-
ence points.

2. METHOD
In this section we present the methods we used, model

their performance, and give implementation details. In §2.1,
we first demonstrate the GEMM approach to solving the kNN
kernel. In §2.2, we discuss various selection algorithms and
point out the necessary features of a suitable algorithm. In
§2.3, we present variants of GSKNN and explain the general
logic of their design. In §2.4, we illustrate how to implement
an architecture-dependent kNN micro-kernel and select ap-
propriate blocking parameters. In §2.5, we present data-
and task-parallel schemes for the GSKNN algorithm; both are
useful depending on the input parameters. We then intro-
duce a theoretical performance model in §2.6 to compare
di↵erent implementations of the kNN kernel and provide an
analytical method for tuning GSKNN.

2.1 GEMM Approach to k Nearest Neighbors
Given the notation in Table 2, we start by reviewing the

kNN kernel in an arbitrary d dimensional space. Given
a set of query points Q(1:d,1:m) and a set of reference
points R(1:d,1:n) which are subsets of X (1:d,1:N), Algo-
rithm 2.1 summarizes the method of updating the neighbor
lists <N ,D> of the queries Q. By using expansion (1), the
pairwise square distance C can be computed in two parts:
(1) C = Q

T

R (GEMM) and (2) Q2 and R2. For each row

https://github.com/ChenhanYu/rnn

Notation Size Description
N problem size
d dimension
m number of query points
n number of reference points
k neighbor size
p number of processors

X (:, i) Rd⇥1 X (:, i) = x

i

2 Rd

X Rd⇥N point dataset
X2(i) RN X2(i) = kx

i

k22
q Nm a subset of X ids
r Nn a subset of X ids
Q Rd⇥m

Q(:, i) = X (:, q(i))
Q2 Rm

Q2(i) = X2(q(i))
R Rd⇥n

R(:, j) = X (:, r(j))
R2 Rn

R2(j) = X2(r(j))
C Rm⇥n

C(i, j) = kQ(:, i)�R(:, j)k22
N (i, :) Nm⇥k

kNN ids of q(i)
D(i, :) Rm⇥k

kNN square distance of q(i)

Table 2 Notation used with MATLAB style matrix representations

C(i, :), the kNN search selects the k smallest values and up-
dates its corresponding neighbor list <N (i, :),D(i, :)> with
<r(j),C(i, j)> where r(j) is the global index of reference
R(:, j).

Algorithm 2.1 GEMM Approach to k-Nearest Neighbor

C = �2QT

R; //GEMM(�2,QT ,R,0,C);

for each query i and reference j do
C(i, j)+ = Q2(i) +R2(j); //�2xT

i

x

j

+ kx
i

k22 + kx
j

k22;
end for
for each query i do

Update <N (i, :),D(i, :)> with <r(:),C(i, :)>
end for

Storage: In approximate nearest-neighbor algorithms, Q
and R are gathered from the global coordinate table X .
When Q and R are distributed non-uniformly in X , we need
to first collect the data points and pack them into a con-
tiguous dense matrix format, since GEMM can only deal with
regular stride inputs. The collection process can be writ-
ten as Q(:, i) = X (:, q(i)) and R(:, j) = X (:, r(j)) where
q(i) indicates the global index of the i-th point in Q, and
r(j) indicates the global index of the j-th point in R. The
square 2-norms Q2 and R2 can be collected from X2 along
with <N ,D>. Another issue is that the output C of GEMM is
traditionally stored in column major ordering. In this case,
the neighbor search on C(i, :) will be stride accessed, but
not contiguous. A simple fix is to compute the transpose
form C

T = R

T

Q which yields a row major storage of C.
Algorithm 2.1, using GEMM as a building block, provides

good e�ciency for high dimensional kNN. The GEMM routine
itself can also be parallelized e�ciently with a data-parallel
scheme. The remaining part of Algorithm 2.1 is embarrass-
ingly parallel, since each query can be processed indepen-
dently. However, GEMM is also the bottleneck of the method
due to its standardized interface, which disables further opti-
mization across functions. For example, the square distance
evaluation and the neighbor selection algorithms we discuss
in §2.2 can be fused with GEMM to filter out the unlikely neigh-
bor candidates. But this requires a custom implementation
of the GEMM.

2.2 Neighbor Search Algorithms

Method Best case Worst case Average
Heap Select n n log(k) n log(k)
Quick Select n+ k (n+ k)2 n+ k

Merge Sort n log(k) n log(k) n log(k)

Table 3 Complexity of selection algorithms [4]

GSKNN seeks to embed the neighbor search in the GEMM ker-
nel, where only a small portion of the n candidates (⌧ k)
will be updated each time. Table 3 illustrates possible solu-
tions to the neighbor search problem and their corresponding
complexity. It is important that the selection algorithm has
O(n) best case complexity which reduces the probability of
degrading the e�ciency of GEMM. Thus, GSKNN uses maximum
heap selection, because array storage provides good memory
locality, and it can be vectorized by adjusting the number
of children per node. Next, we explain our decision through
the discussion of possible selection algorithms.

Quick select: In [14] the n candidates are partitioned
recursively by a pivot value and then one selects the kth
smallest number. This method has O(n) average complex-
ity. Unfortunately, given that the average complexity has a
relatively large coe�cient, the sizes of n and k that we are
interested in the kNN kernel are typically not large enough
to take advantage of linear average complexity. To update a
given neighbor list, we first concatenate the list with n can-
didates and find the new kth element to split the n+k array.
This leads to O(n+ k) best case complexity when updating
the neighbor list. This property makes it not suitable for
embedding within the GEMM kernel when n is small.

Merge sort: This variant of merge sort divides the length
n array into n

k

chunks, each of which has length k. We per-
form merge sort for each chunk, which leads to n

k

⇥ k log(k)
complexity. Each chunk is then merged updating the neigh-
bor list, and at each merge step we only keep the first k ele-
ments. This algorithm achieves n log(k) complexity in both
the best and worst case, and it guarantees contiguous mem-
ory access, which can be highly vectorized with a bitonic
merge [3]. However, the extra required memory space and
fixed complexity still make merge sort selection not com-
petitive with other methods. Another drawback is that the
algorithm has O(log(k)) complexity for updating the given
neighbor list, which is too expensive when n is small.

0 1 2 3

4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19

root

1 2

3 4 5 6

7 8 9 10 11 12 13 14

0

15 16 19

root

17 18 20 21 22

Figure 1 Binary and d-heap data structure for heap selection

Maximum heap select: A max heap maintains the k

nearest neighbors in a complete binary tree (Figure 1) via an
array, where the root (index 0) always contains the largest
value. To update the heap with a new neighbor candidate
that is smaller than the root, replace the root with the can-
didate and perform heap adjustment such that the heap
property is preserved. If the heap is full, the worst case
complexity of the update is O(n log(k)) for n candidates.
The best case only takes O(n) by filtering out all the candi-

dates larger than the root. If the heap is empty, the first k

candidates only take O(k) [8] to build the heap. The key to
attaining a linear best case complexity is the capability to
access and delete the largest value in O(1) time, which re-
duces the damage to the original GEMM design. However, the
worst case complexity is still very bad for large k. In such
cases, the memory access pattern also becomes random, de-
stroying locality. To reduce the random access penalty, an
implicit d-heap [16] yields better practical performance in
modern processors. By having more children for each node
(Figure 1), a longer cache line is utilized. In §2.4, we show
how a d-heap2 can further be optimized by memory padding
and vectorization.

Given the above considerations, we decided to use heap
selection algorithm for GSKNN. Although heap selection has
a higher average complexity than the quick select, it has
much better memory access patterns. It’s important that
the neighbor search algorithm does not add too much ex-
tra burden to the GEMM kernel. Heap selection is the ideal
method due to its array storage and cheap update cost for
small n. Given that the worst case complexity of this selec-
tion still grows with k, it is unclear how to optimally place
it withing the GEMM loop hierarchy. This will be further dis-
cussed in §2.3.

2.3 General Stride k-Nearest Neighbors
We present a new computational kernel GSKNN, that refac-

tors the kNN problem by fusing the GEMM kernel with the
distance calculations and the nearest-neighbor search. We
expose the possible benefits of reusing the output C (square
distances) immediately after it’s computed such that less
memory latency is su↵ered. Heap selection can be performed
right after a small block of C has been computed, which in-
creases the reuse rate of the data because C is still in the
L1 cache. By doing the heap selection early, C can be dis-
carded without writing back to memory. To accomplish this
we require a transparent GEMM implementation and a light
weight neighbor search algorithm such as those discussed in
§2.2.

Algorithm 2.2 GSKNN Approach to k-Nearest Neighbor

for j

c

= 0 : n
c

: n� 1 do /* 6th */

for p

c

= 0 : d
c

: d� 1 do /* 5th */

X (p
c

: p
c

+ d

c

� 1, r(j
c

: j
c

+ n

c

� 1)) ! R

c

if p

c

+ d

c

� d then
X2(r(jc : j

c

+ n

c

� 1)) ! R

c

2

end if
for i

c

= 0 : m
c

: m� 1 do /* 4th */

X (p
c

: p
c

+ d

c

� 1, q(i
c

: i
c

+m

c

� 1)) ! Q

c

if p

c

+ d

c

� d then
X2(q(ic : i

c

+m

c

� 1)) ! Q

c

2

end if
for j

r

= 0 : n
r

: n
c

� 1 do /* 3rd */

for i

r

= 0 : m
r

: m
c

� 1 do /* 2nd */

micro-kernel() in Algorithm 2.3
end for

end for /* end macro-kernel */

end for
end for

end for

2
The d here is not related to the d in Table 2. d-heap is the conven-

tional name of the d-ary heap.

We first present pseudo-code of GSKNN in Algorithm 2.2
and Algorithm 2.3. We later refactor GSKNN to show how
square distance evaluations and heap selections in Algo-
rithm 2.1 can be embedded into the GEMM kernel. While
Algorithm 2.3 seeks to embed the heap selection in the earli-
est stage, there are other placements of heap selection which
can be explored. We present six variants which expose all
possible placements of the selection at the end of this section
and discuss their pros and cons.

The algorithm contains six layers of loops, each of which
corresponds to di↵erent partitioning of the m, n and d di-
mensions. The partition scheme is identical to that of the
Goto algorithm in BLIS [29] and GotoBLAS [11], which
e�ciently amortizes memory packing, reuse, and alignment
operations to achieve high computational e�ciency. Begin-
ning with the outer most loop (6th loop; indexed by j

c

), the
n dimension (R(:, 1 : n)) is partitioned with block size n

c

.
The 5th loop (indexed by p

c

) partitions the d dimension with
block size d

c

. The 4th loop (indexed by i

c

) partitions the m

dimension (Q(:, 1 : n)) with block sizem
c

. The macro-kernel
contains the 3rd and the 2nd loops (indexed by j

r

and i

r

)
which further partition Q and R into smaller blocks. The
micro-kernel (Algorithm 2.3) contains the 1st loop (indexed
by p

r

) that calculates square distances for a small block of
C with size m

r

⇥n

r

. We also place the heap selection within
this loop.

Algorithm 2.3 GSKNN micro-kernel (1st loop)

for p

r

= 0 : d
c

� 1 do /* 1st */

for j = 0 : n
r

� 1 do /* unroll m

r

-by-n
r

*/

for i = 0 : m
r

� 1 do
C

r(i, j) = C

c(i
c

+ i

r

+ i, j

c

+ j

r

+ j)
C

r(i, j)� = 2Qc(i
r

+ i, p

r

)Rc(j
r

+ j, p

r

)
C

c(i
c

+ i

r

+ i, j

c

+ j

r

+ j) = C

r(i, j) //�2xT

i

x

j

end for
end for

end for /* end rank-d
c

update */

if p

c

+ d

c

� d then
for j = 0 : n

r

� 1 do /* unroll m

r

-by-n
r

*/

for i = 0 : m
r

� 1 do
C

r(i, j)+ = Q

c

2(ir + i) +R

c

2(jr + j) //kx
i

� x

j

k22
end for

end for
for i = i

c

+ i

r

: i
c

+ i

r

+m

r

� 1 do
Update <N (i, :),D(i, :)> with <�(j

c

+ j

r

: j
c

+ j

r

+
n

r

� 1), Cr

>

end for
end if

Refactoring: A good way to understand the features of
GSKNN is to identify the scope of GEMM and the heap selec-
tion in Algorithm 2.1. If we remove all statements inside the
if control flow (p

c

+ d

c

� d), the remaining parts of Algo-
rithm 2.2 and Algorithm 2.3 are almost exactly the original
Goto algorithm [11]. The only di↵erence is that GSKNN can
take non-uniform stride inputs indicated by the global in-
dices q(:) and r(:). The reason for the support of this feature
is explained in the packing paragraph. The heap selection
and the square 2-norm accumulation in Algorithm 2.1 are
all moved into the 2nd loop (in Algorithm 2.3); these com-
putations will only be executed in the last p

c

iteration after
the 2nd loop of GEMM has completed. If p

c

is not in its last

iteration, then GSKNN will only perform the rank-d
c

update:

C+ = Q(p
c

: p
c

+ d

c

� 1, :)TR(p
c

: p
c

+ d

c

� 1, :) (2)

where the temporary rank-d
c

update result will be accumu-
lated in the C

c bu↵er. Otherwise, the square distance will
be computed and heap selection will be performed.

Packing: According to the partitioning of each dimen-
sion, Algorithm 2.2 creates temporary bu↵ers Q

c(m
c

, d

c

),
R

c(d
c

, n

c

), Q

c

2(mc

, 1), R

c

2(1, nc

) which duplicate and rear-
range relevant pieces of data. This process is called memory
packing [11, 29] and is used within typical implementations
of GEMM. Each bu↵er is designed to fit into di↵erent portions
of the memory hierarchy in Figure 2. Each region is packed
into a “Z” shape to guarantee a contiguous access pattern in
the macro- and micro-kernel. Another reason that we must
perform packing is to align the memory to a specific address
o↵set which is essential for vectorization. The SIMD (Single
Instruction Multiple Data) instructions we use in the micro-
kernel (see §2.4) require the memory to be aligned to reduce
the memory latency. Given the fact that the GEMM routine
always repacks the memory, Algorithm 2.2 skips the phase of
collecting Q and R, choosing to pack directly from X to Q

c

and R

c, avoiding redundant memory operations and saving
bu↵er space.

Var#1: There are six variants of GSKNN labeled accord-
ing to when we choose to perform heap selection. We label
Algorithm 2.2 and Algorithm 2.3 as Var#1. In this vari-
ant, the heap selection is performed at the earliest possible
location in the code (immediately after the 1.st loop). To
help visualize the algorithm design, we illustrate its data
flow in Figure 2. After the partitioning of the reference set
in the 6th loop, we identify the portion of the those points
(orange) in X which are located in the main memory. In
the 5th loop, we collect the first d

c

elements of the orange
portion with the global indices r(:) and pack the reference
points into R

c. In the 4th loop, we identify and collect the
query points (light blue) from X with the global indices q(:),
packing them into Q

c. At this moment, Rc will be evicted
to the L3 cache since Q

c will occupy all of L1 and part of
L2. R

c and Q

c will be reused inside the macro-kernel (3rd
and 2nd loops). For each micro-kernel call, a panel of Rc

and Q

c will be promoted to the L1 cache for the rank-d
c

update, but only the R

c panel will stay in L1 since the 2nd
loop will access di↵erent panels of Qc and reuse the same
R

c panel. Inside the micro-kernel, the result of the rank-d
c

update will be accumulated inside the registers C

r (green).
In the last p

c

iteration, Qc

2 (purple) and R

c

2 (yellow) will also
be collected from X2 which will reside in the same level as
Q

c and R

c. After the 1st loop, Qr

2 and R

r

2 are loaded into
the registers, and the square distances are computed in C

r.
The heap (blue) is promoted all the way from memory to
registers to complete the heap selection on C

r, and we can
immediately discard C

r without storing it back. The draw-
back of Var#1 is that the heap selection may evict Q

c and
R

c from the L1 and L2 caches if k is too large. To ensure
the proper cache behavior, we may need to move the heap
selection to another loop depending on the size of k.
Other variants: The other variants from Var#2 to Var#6

are defined by inserting the heap selection after the appro-
priate loop. The index of the variant reveals the loop in
which we perform heap selections. As the index of the loop
increases, so does the update size of that selection. Var#1
updates the nearest neighbors after a small tile of square

Register

L1 cache

L2 cache

L3 cache

Memory

X

Qr2Nr,Dr QrCr

Rr2

Rr= -2Qr Rrx

d-
by

-N

dc

mc-by-dc

1-by-nr

dc-by-nr

1-by-nc

mr-by-1mr-by-nr

m
r-b

y-
1

m
r-b

y-
k

d c
-b

y-
n c

Rc2

Qc

m
c-b

y-
1

Rc

Qc2

N,D

X2

1st

2nd & 3rd

4th

5th

6th

m
-b

y-
r

1-by-N

Figure 2 maps GSKNN to a 5-level memory hierarchy (3-level cache).
Q (light blue), Q2 (purple), R (orange), R2 (yellow) and <N ,D>
(blue) will be packed and then reside in di↵erent levels of cache.
A piece of memory associated with the micro-kernel operation is
shown in the higher levels if pieces from those levels will be used
within the micro-kernel. Cr (green) is temporarily created at the
register level and is immediately discarded after heap selection.

distances C

r have been evaluated; a higher numbered vari-
ant will update its neighbors with a larger square distance
matrix. For example, Var#6 performs heap selection after
the 6th loop, just like in Algorithm 2.1. Var#2 and Var#3
are not preferred because of two reasons. (1) When k is
small, they need to store a larger square distance matrix
which leads to a higher memory overhead than Var#1. (2)
When k is large, they lead to high reuse rate of the heap
such that the heap won’t be evicted from L1 and L2. Recall
from Figure 2 that L1 and L2 are designed to accommodate
the panels of Rc and Q

c. If the heap occupies L1 and L2
as occurs with a high reuse rate, GSKNN needs to repeatedly
load R

c and Q

c from L3 which will degrade its e�ciency.
Therefore, these two variants are usually slower than Var#6
when k is large. Var#4 is not viable, since the 5th loop
blocks in the d dimension where the square distances are
not fully computed. Var#5 is only preferred when there is
not enough memory to store all the square distances. After
the 5th loop, m ⇥ n

c

of square distances will be computed.
Heap selections must load the square distances from mem-
ory, since m ⇥ n

c

can be much larger than the L3 cache.
Thus, Var#5 and Var#6 both su↵er the DRAM latency, and
the only di↵erence is that Var#5 gets to store only m⇥ n

c

distances instead of m ⇥ n. Still, Var#5 is not preferred
even it can save some memory space, since all heaps may
need to be reloaded from memory n

nc
times which doubles

the memory latency or even worst.
Overall, Var#1 gives the greatest opportunity for memory

reuse without disturbing the proper cache behavior of GEMM,
and Var#6 corresponds to the typical approach. In §2.6 we
will briefly discuss how to switch between these two variants

based on di↵erent sizes of k and d.

2.4 Micro-Kernel Implementation and Param-
eter Selection

We have illustrated the principles that go into designing
the kNN kernel, and now we will discuss architecture depen-
dent implementation details. We need to understand how
to implement a micro-kernel such that the rank-d

c

update is
competitive to GEMM. We also need to know which blocking
parameters to use and when to switch between variants of
GSKNN to maintain e�ciency. In the rest of this section, we
briefly illustrate the micro-kernel design logic and present
an analytical method for selecting parameters.

The idea of exposing the micro-kernel first came from the
BLIS framework which aims to identify the minimum por-
tion of GEMM calculations that are architecture dependent.
GotoBLAS [12] (predecessor of OpenBLAS [24]) implements
the 1st to 3rd loops (macro-kernel or inner-kernel) in assem-
bly, but the BLIS framework only implements the 1st loop
(micro-kernel) in SIMD assembly or vector intrinsics. The
2nd through 6th loops are usually implemented in C which
generates some overhead, but programmability and porta-
bility are significantly increased. Following the same design
philosophy, GSKNN maintains the micro-kernel structure and
uses outer loops (2nd-6th) written in C. We include the rank-
d

c

update (the inner-most loop), the square distance evalu-
ations and the heap selection (Var#1) in the micro-kernel.
The Var#1 micro-kernel (Algorithm 2.3) computes anm

r

⇥
n

r

square distance matrix C

r and updates the neighbor lists
in four steps: (1) rank-d

c

update, (2) computing square dis-
tances, (3) conditionally storing the square distances, and
(4) heap selections. Di↵erent implementations may vary be-
tween architectures. Here we only illustrate the idea of ma-
nipulating vector registers and pipelining the memory oper-
ations.
Rank-d

c

update and square distances: The inter-
mediate results of the rank-d

c

update, Cr, are created and
maintained inside vector registers. Remaining vector regis-
ters are used by Q

r, Rr, Qr

2, R
r

2, and other values required
in the square distance calculations. To overlap the memory
operations when loading Q

r and R

r, we double bu↵er by un-
rolling the 1st (d

c

) loop either two or four times. The idea is
to use auxiliary registers to preload the data from memory so
that the data is already present when it is required, which
prevents the ALU (Arithmetic Logic Unit) from stalling.
For example, the next Q

r (Qc pointer + m

r

) and R

r (Rc

pointer + n

r

) are preloaded by two auxiliary registers con-
currently with the rank-1 update (Cr+ = Q

r ⇥ R

r). An
even larger scale memory optimization can be accomplished
by using the prefetch instruction. This promotes memory
to a faster level (e.g. L1 cache) in the hierarchy without
actually loading it into registers. For example, the next re-
quired micro-panel of R

c, the current C

c and the root of
the heap can be prefetched and overlapped with the current
rank-d

c

update. These two optimization schemes are called
the rank-d

c

update pipeline.
In addition to the memory pipeline, the instruction count

can be further optimized if the system supports vectorized
instructions (SIMD). Given that VLOAD, VSTORE, VADD and
VMUL (or VFMA) are supported, an e�cient way to complete
the rank-1 update in the rank-d

c

update pipeline is to load
vectors Qr and R

r and perform a series of VFMA instructions
interleaved with register permutation. Figure 3 shows that a

R0 R1 R3R2

Q0

Q1

Q2

Q3

00

11

22

33

R0 R1 R3R2

Q0

Q1

Q2

Q3

00

11

22

33

02

13

20

31

R2 R3 R1R0

Q0

Q1

Q2

Q3

00

11

22

33

02

13

20

31

03

12

21

30

R3 R2 R0R1

Q0

Q1

Q2

Q3

00

11

22

33

02

13

20

31

03

12

21

30

23

01

10

32

FMADD Cr03_0, Qr, Rr FMADD Cr03_1, Qr, Rr

FMADD Cr03_2, Qr, Rr FMADD Cr03_3, Qr, Rr

SHUFFLE Rr, Rr, 0x5

PE
RM
UT
E2
F1
28
 R
r,
 R
r,
 0
x1

SHUFFLE Rr, Rr, 0x5

Figure 3 AVX 4⇥4 rank-1 update. Given Qr (blue) and Rr (orange),
we compute the 4⇥4 outer-product Cr (green) by 4 VFMAs interleaved
with vectorized shu✏ing operations. The 3rd operands (0x5, 0x1)
indicate the shu✏ing (permutation) type.

4⇥4 C

r can be computed by executing the VFMA instruction
on Q

r and di↵erent permutations of R

r four times. Each
time a permutation occurs, a VFMA computes a diagonal of
the current Cr. At the end of the rank-d

c

updates, we per-
mute C

r back to original order. The �2 from Equation (1)
is scaled at the end of the rank-d update, and the square
distances can be computed by adding A

r

2 and B

r

2 to C

r.
General `

p

norm: We briefly discuss how to implement
other kinds of norms within the micro-kernel structure. `1

and `1 can be implemented by replacing each VFMA with
VMAX, VMIN, VSUB and VADD (VMAX if `inf). The 3-norm and
other p-norms can either be expanded or approximated by
a VPOW3 dependent upon instruction counts.

Heap selection: Before the heap selection, we have a
chance to decide whether or not to store the square distance,
C

r, currently in register memory back to slower memory by
checking whether the square distance is smaller than the
root of the max heap. This comparison can also be vector-
ized by broadcasting the root value and using a VCMP. In the
best case scenario, all of Cr can be discarded which provides
GSKNN a very large performance benefit. In practice, we use
either a binary or a 4-heap, depending on the magnitude of
k. By padding the root with three empty space (Figure 1),
four children will fall in the same cache line (say 256 bytes).
Accessing all children only needs one cache line which de-
creases the latency. The kind of heap used for selection de-
pends on how many cache lines are present and how many
extra instructions are needed in the worst case. Selection on
a 4-heap requires extra comparisons to find the maximum
child, but the depth of the heap (log4(k)) is smaller than the
binary heap. Vectorizing the maximum child search requires
2 VMAX, 1 PERMUTE, 1 PERMUTE2F128 and 1 VTESTQ, but these
operations all work on the same cache line. In contrast, a
binary heap can find its maximum child with a single com-
parison, but it may require accessing more cache lines due
to log2(k) height. In GSKNN, Var#1 uses a binary heap to
deal with small k, and Var#6 uses a 4-heap for large k.

Selecting parameters: The parameters m
c

, n
c

, d
c

, m
r

and n

r

are all architecture dependent. To choose the optimal

3
VPOW is not part of AVX, but it is supported in Intel SVML. To im-

plement VPOW, the convention is to use a minimax polynomial approx-

imation.

combination of parameters for a specific architecture, there
are two primary approaches: tuning by exhaustive search or
tuning by modeling. Following [19], we use the Intel Ivy-
Bridge architecture as an example to demonstrate how to
choose these parameters.

• m

r

and n

r

are chosen based on the latency of a VFMA in-
struction. For Ivy-Bridge (no VFMA), the latency of an
equivalent VMUL and VADD is 8 cycles. To prevent the
pipeline from stalling, more than 8 VFMAs must be issued.
In total, 8⇥ 4 registers are required.

• d

c

is chosen to utilize the L1 cache, which corresponds to
the size of Rc andQ

c micro-panels. To fit the micro-panels
in L1, d

c

is chosen such that m

r

⇥ d

c

+ n

r

⇥ d

c

is about
3
4 of the L1 cache size. For Ivy-Bridge, d

c

= 256. This
preserves 1

4 of the L1 cache for other memory to stream
through.

• m

c

and n

c

are chosen based on the L2 and L3 cache sizes.
In the single-core case, we choose m

c

= 96 so that 3
4 of the

L2 cache contains Q

c, and we choose n

c

= 4096 to fit R

c

in the L3 cache. In the case of multi-core execution, m
c

will be dynamically determined depending on the number
of processors and the problem size m. This helps achieve
better load balancing across multiple processors.

Switching between variants: Since we have eliminated
other variants in §2.3, we only have to choose between Var#1
and Var#6. Var#1 avoids storing C

c but su↵ers a large
memory penalty when k is large. Var#6 maintains the e�-
ciency of the rank-d

c

update for large k, but does not gain
the reuse benefits of Var#1. A two dimensional threshold
can be set on the (d,k) space, and which variant is used is
determined based on the threshold. A tuning based decision
table would need to search the whole (d,k) space which can
be time consuming. By understanding the trade o↵ between
these two variants, we later introduce a runtime prediction
model in §2.6 which can quickly produce a smaller search
space for fine tuning.

2.5 Parallel k-Nearest Neighbors Search
kNN can be naturally parallelized by processing each query

independently. In approximate nearest-neighbor, all kNN
kernels can be solved independently which is called task-
parallelism. Computation in a kNN kernel can also be par-
allelized by exploiting data parallelism. This approach is
more challenging. We first tackle the load balancing prob-
lem inherent to task-parallelism, and then we explain the
data-parallel scheme by exploring di↵erent options in the
six layers of loops.
The task-parallel scheme is a good choice when a large

number of small kNN kernels need to be parallelized. A
small kernel usually doesn’t provide enough parallelism to
exploit all resources, but the number of tasks can be su�-
cient to grant speedup. Each kernel is assigned to a pro-
cessor which creates its own schedule. Generally, optimal
scheduling is an NP-complete problem [26], but it is rela-
tively easy if there are no dependencies between each task.
On a homogeneous parallel system, an optimal static sched-
ule can be found by a greedy first-termination list scheduling
on a sorted task-list (a special case of [13]). All kNN kernels
are first sorted in descending order according to their esti-
mated runtime (see §2.6), and each task is assigned to the
processor with the smallest accumulated runtime.

type coe↵ Algorithm 2.1 GSKNN

T

f

- 1
⌧f

(2d+ 3)mn

T

o

- 1
⌧f

24mn+ 24mk log(k)

T

X
m

r ⌧

b

dn+ dmd n

nc
e dn+ dmd n

nc
e

T

X2
m

r ⌧

b

n+md n

nc
e n+md n

nc
e

T

Q

c

m

w ⌧

b

dmd n

nc
e dmd n

nc
e

T

Q

c
2

m

w ⌧

b

md n

nc
e md n

nc
e

T

q

m

r ⌧

b

md n

nc
e md n

nc
e

T

R

c

m

w ⌧

b

dn dn

T

R

c
2

m

w ⌧

b

n n

T

r

m

r ⌧

b

n n

T

Cc
m

r/w ⌧

b

2(d d

dc
e � 1)mn 2(d d

dc
e � 1)mn

T

D
m

r/w ⌧

`

2✏mk log(k) 2✏mk log(k)
T

N
m

r/w ⌧

`

2✏mk log(k) 2✏mk log(k)
T

Q

m

r/w ⌧

b

2dm -
T

R

m

r/w ⌧

b

2dn -
T

C

m

r/w ⌧

b

4mn (mn⇤)
Table 4 Theoretical runtime breakdown analysis of GSKNN and Al-
gorithm 2.1. Note that only Var#6 has the TC

m term.

When m and n are large enough, Algorithm 2.2 reveals
more parallelism that can be exploited. Exploiting paral-
lelism inside di↵erent layers of loops is called data-parallelism.
Our goal is to choose the loop that provides the most bene-
fit in reusing the cache that is shared by all the processors.
Following [28], we aim to parallelize the 4th loop surround-
ing the micro-kernel. Every m

c

query will be assigned to a
processor with a periodic schedule (OpenMP parallel loop
pragma with a static schedule). Given enough parallelism in
the 4th loop, this parallel scheme is the best choice on Sandy-
Bridge/Ivy-Bridge processors, because the memory packing
scheme in GSKNN is naturally portable to multi-core archi-
tectures with separated L2 caches and a shared L3 cache.
Each processor will create a private Q

c and preserve it in
its private L2. R

c is shared and preserved in the L3 cache,
making it available to all processors. The only drawback of
this scheme is that load balancing issues may arise when m

is not a multiple of m
c

⇥ p. This problem can be solved by
dynamically deciding m

c

to better fit the given p and m.
Other choices may be suitable for parallelization in di↵erent
architectures. For example, the 6th loop is a good candidate
for separated L3 caches such as on a NUMA (Non Uniform
Memory Access) node which has more than one CPU. The
3rd loop is parallelized in [28] on Intel Xeon Phi due to
the large nc

nr
ratio. However, the 3rd and 6th loop are not

suitable for GSKNN, since parallelization on the reference side
may lead to a potential race condition when updating the
same neighbor list.

2.6 Performance Model
We derive a model to predict the execution time T and

the floating point operation e�ciency (GFLOPS) of Algo-
rithm 2.2. These theoretical predictions can be used for
performance debugging and helping us understand possible
bottlenecks of the GEMM approach. The estimated time T can
also be used in task scheduling on both heterogeneous and
homogeneous parallel systems. T can also help to decide
between the variants of GSKNN.

Assumption: For simplicity, the model assumes that
the underlying architecture has a modern cache hierarchy,

which contains a small piece of fast memory (cache) and a
large chunk of slow memory (DRAM). We further assume
that accessing the fast memory can be overlapped with ALU
(Arithmetic Logic Unit) operations with proper preloading
or prefetching instructions. In our model the latency of load-
ing slow memory cannot be hidden. For memory store op-
erations, we assume a lazy write-back policy, which won’t
write through the slow memory if it’s not necessary. We as-
sume that the write-through time can be overlapped as well.
The slow memory operations in Algorithm 2.2 are presented
as three parts (1) memory packing (2) reading/writing C

c

and (3) heap selections. Based on the assumptions above,
these slow memory operations followed by fast floating point
operations comprise the majority of the sequential compu-
tation time.

Notation: In addition to the notation introduced in §2,
we further define ⌧

f

, ⌧

b

, ⌧

`

, ✏, T , T

f

, T

m

and T

o

in the
model. ⌧

f

is the number of floating point operations that the
system can perform in one second, ⌧

b

(bandwidth related)
denotes the average time (in seconds) of a unit of contiguous
data movement from slow memory to fast memory; and ⌧

`

(latency related) denotes the time (in seconds) of a random
memory access. We use ✏ 2 [0, 1] to predict the expected cost
of heap selection. T

f

and T

m

represent the time consumed
by floating operations and memory operations respectively.
T

o

is the total time spent on other instructions. By summing
the three terms together, T = T

f

+T

m

+T

o

, we get the total
time.

Floating point and other operations: In Table 4, we
break down the theoretical cost of each component, starting
with the floating point operation time T

f

, followed by T

o

,
and then by each individual term of T

m

. T

f

and T

o

can be
computed using the following formula:

T

f

+ T

o

=
1
⌧

f

(2d+ 3)mn+
24
⌧

f

(mn+ ✏mk log(k)) (3)

where 2dmn is the number of operations in the rank-d up-
date, and 3mn is the number of floating point operations
required in Equation (1). Notice that heap selection doesn’t
require any floating point operations but still contributes
to the runtime. T

o

is the time required for the selection.
Each heap selection requires MAX, MIN, CMP and pointer cal-
culations for swapping <N ,D>. In the model, we estimate
the cost optimistically by assuming that each heap will only
require ✏k log(k) adjustments, and each adjustment takes
12 instructions (about 24 floating points operations). The
expected cost can be adjusted by setting ✏ to reflect the
expected complexity of heap selection. The times in Equa-
tion (3) are computed by dividing the total floating point
operation count (or instruction throughput count) with the
theoretical peak floating point operation throughput (⌧

f

)
per second.

Memory operations: The total data movement time
varies with both problem size m, n, d and k and block sizes
m

c

, n
c

and d

c

. Despite being able to calculate complexity in
advance, choosing the proper coe�cient to accurately model
the time taken by data movement remains di�cult. The
details of data movement between registers and caches is
hidden by the compiler, and the movement between caches
and DRAM is hidden by the cache coherence protocol of the
architecture. Fortunately, the square distance evaluations
in Algorithm 2.2 are designed based on the understanding
of memory movement, which makes cache behavior more

predictable. The remaining di�culty comes from the heap
selections, which can vary in complexity from the best case
to the worst case. To make matters worse, memory access
can be random during the heap adjustment for large k.

All memory movement costs in Table 4 are labeled by
subindices T

m

. Each term is characterized by its read/write
type and the amount of memory involved in the movement.
Following the model assumptions, the time for memory move-
ment in Var#1 can be computed using the following formula:

T

V ar#1
m

= ⌧

b

(nd+ 2n) + ⌧

b

(dm+ 2m)

⇠
n

n

c

⇡
) +

⌧

b

(

⇠
d

d

c

⇡
� 1)mn+ ⌧

`

(2✏mk log(k))

All the write operations are omitted; we only sum the read
operations. Operations will be repeated multiple times de-

pending on which loop they reside in. For example, ⌧
b

(
l

d

dc

m
�

1)mn is the cost of reading/writing the intermediate result
C

c, which increases with d as a step function because C

c is
used to accumulate the rank-d

c

(to be reloaded in the 5th
loop). The cost of the heap selection, ✏⌧

`

2mk log(k), has a
di↵erent unit cost than ⌧

b

since the memory access may be
random–especially when k is large. For a binary heap, ⌧

`

is
roughly 2⌧

b

depending on the target DRAM’s column access
strobe (CAS) latency and the memory cycle time. For a 4-
heap where four children will be accessed together, ⌧

`

will
be roughly equal to ⌧

b

. We can also derive an estimate for
T

V ar#6
m

in (4) which has an additional term mn due to the
cost of storing C.

T

V ar#6
m

= T

V ar#1
m

+ ⌧

b

mn. (4)

If we further assume that GEMM is implemented as a variant
of the Goto algorithm, the memory movement cost of Al-
gorithm 2.1 can be estimated by T

V ar#1
m

with 3 additional
terms A, B and C.

T

Algorithm 2.1
m

= T

V ar#1
m

+ ⌧

b

(dm+ dn+ 2mn). (5)

The cost of these three additional terms from the GEMM in-
terface can be calculated. The coordinates in X need to be
collected in A and B which leads to dm+ dn. The standard
GEMM output C takes mn. The square distance accumulation
will read/write C which leads to another factor of mn cost
in (5).

Comparison: Because T

f

and T

o

are the same between
GSKNN and Algorithm 2.1, we can show that Var#1 has
smaller memory complexity (in both space and memory op-
erations) by not explicitly forming A, B and C. This e↵ect
is significant in low d, since T

C

m

= 2⌧
b

mn doesn’t decrease
with d, which makes GEMM a memory bound operation. In
Figure 4, we compare the floating point e�ciency ((2d+3)mn

T

)
between the model prediction and experimental results. We
evaluate the average runtime of three consecutive kNN ker-
nels. The prediction always overestimates the e�ciency be-
cause we omit the cost of accessing the fast memory. We also
find that the prediction is too optimistic in low d, because
the model doesn’t capture the fact that the CPU pipeline
is not fully occupied during the ramp up and ramp down
phase. The model captures the performance di↵erence be-
tween methods for large d exactly, which reflects the memory
savings of GSKNN.

The model can further be used to select between variants,
helping reduce the tuning time. Figure 5 plots the GFLOPS

d
0 200 400 600 800 1000

G
F

L
O

P
S

0

5

10

15

22

28.32
Var#1, p=1, m=n=8192, k=16

d
0 200 400 600 800 1000

G
F

L
O

P
S

0

50

100

150

200

248
Var#1, p=10, m=n=8192, k=16

d
0 200 400 600 800 1000

G
F

L
O

P
S

0

5

10

15

22

28.32
Var#1, p=1, m=n=8192, k=512

d
0 200 400 600 800 1000

G
F

L
O

P
S

0

50

100

150

200

248
Var#1, p=10, m=n=8192, k=512

d
0 200 400 600 800 1000

G
F

L
O

P
S

0

5

10

15

22

28.32
Var#6, p=1, m=n=8192, k=2048

d
0 200 400 600 800 1000

G
F

L
O

P
S

0

50

100

150

200

248
Var#6, p=10, m=n=8192, k=2048

Figure 4 Predicted floating point e�ciency (GFLOPS). Dashed
lines are the predicted e�ciency by (4) and (5). The solid blue line
is the experimental e�ciency of GSKNN, and the solid red line is the
reference kernel with MKL GEMM and an STL max heap. Parameters:
m = n = 8192, k = 16, 512, 2048, ⌧f = 8⇥3.54, ⌧b = 2.2⇥10

�9, ⌧` =

13.91 ⇥ 10

�9, ✏ = 0.5. For the 10-thread result, ⌧f = 10 ⇥ 8 ⇥ 3.10,
⌧b and ⌧` are 1

5 the original value.

k
0 500 1000 1500 2000

G
F

L
O

P
S

16

32

64

128

p=10, m=n=8192, d=16

Modeled Var#1
Modeled Var#6
Var#1
Var#6
MKL + STL
Modeled threshold
Threshold

k
0 500 1000 1500 2000

G
F

L
O

P
S

32

64

128

p=10, m=n=8192, d=64

Modeled Var#1
Modeled Var#6
Var#1
Var#6
MKL + STL
Modeled threshold
Threshold

Figure 5 Predicted 10-core floating point e�ciency (GFLOPS)
for di↵erent k. The predicted threshold (light blue dotted line)
crosses the intersection of the two dashed lines, and the experi-
mental threshold (purple dotted line) crosses the intersection of the
solid blue and yellow lines.

along with k which provides a predicted threshold for the
variant selection. The predicted threshold (light blue dot-
ted line) is close to the real experimental threshold (purple
dotted line) when the dimension grows. This prediction can
help quickly narrow down a small region for fine tuning and
prevent an exhaustive search.

3. EXPERIMENTAL SETUP
Here we give details on the experimental setup used to test

our methods. The current version of GSKNN contains dou-
ble precision x86-64 micro-kernels designed for Intel Sandy-
Bridge/Ivy-Bridge architectures. In all experiments, an AVX

assembly micro-kernel is used to compute the rank-d
c

up-
date, and an AVX intrinsics micro-kernel is used to compute
the case when d is not a multiple of d

c

. Our GSKNN kernel has
been integrated with our implementations approximate all-
nearest-neighbor implementations of randomized KD-trees
and locality sensitive hashing [20, 31]. These implementa-
tions use MPI and OpenMP parallelism and originally used

the GEMM approach for the kNN kernel.
Implementation and hardware: GSKNN is implemented

in C, SSE2 and AVX intrinsics and assembly. Everything ex-
cept the micro-kernel is written in C. The parallel random-
ized KD-tree kNN is written in C++. The code is compiled
with the Intel C compiler version 14.0.1.106 and mvapich2

version 2.0b with the -O3 optimization flag. We carry out
runtime experiments on the Maverick system at TACC with
dual-socket Intel Xeon E5-2680 v2 (Ivy Bridge) processors.
The stable CPU clockrate is 3.54GHz/3.10GHz for 1/10 core
experiments. To make sure the computation and the mem-
ory allocation all reside on the same socket, we use a compact
KMP AFFINITY. The pure OpenMP results use a single
socket of a NUMA node, and the results in Table 1 use 8
NUMA nodes (16 sockets).
GSKNN parameters: We select blocking parameters as

discussed in §2.4 with m

r

= 8, n
r

= 4, k
c

= 256, m
c

= 104
and n

c

= 4096, which make the size of Qc 208 KB and the
size of Rc 8192 KB. For all experiments with k 512, we
use Var#1. Otherwise, we use Var#6.

Dataset: In the integrated experiment in Table 1, we
use a 10 dimensional Gaussian distribution generator and
embed the sample point to a high dimensional space (d =
16, 64, 256, 1024). For the remaining experiments we sample
from a uniform [0, 1]d distribution to create synthetic dataset
for our experiments.

4. RESULTS
We have already presented the integrated runtime results

of the parallel MPI randomized KD-tree approximation to
the all-nearest-neighbor search in §1. Here we report two
sets of results to illustrate the performance of GSKNN.

• We use a runtime breakdown to better show how individ-
ual terms a↵ect the overall runtime. The results show that
early reuse of C can significantly reduce memory overhead.

• The 10-core e�ciency comparison examines di↵erent mag-
nitudes ofm, n, d and k, providing a performance overview
of GSKNN on a shared memory system. We show that
GSKNN overcomes the memory bottleneck of GEMM in low
d. GSKNN can achieve 80% of theoretical peak performance
for k 128 and d � 512.

Breakdown analysis: Table 5 breaks down T

total

into
T

coll

+ TGEMM + T

sq2d + T

heap

, which represents gathering
data from X , evaluating GEMM, evaluating the square dis-
tances, and heap selections respectively. For GSKNN, it is
di�cult to measure the time spent on each phase since a
timer call would lead to a serious overhead inside the 2nd
loop. Thus, we only report the total time for GSKNN and
estimate the time spent on heap selection (see Table 5). For
large d � 256, TGEMM dominates the runtime, and the remain-
ing T

coll

+ T

sq2d + T

heap

are minor (10%). The integrated
square distance kernel in GSKNN is slightly faster than TGEMM

because the time GEMM spends on the T

C

c

m

term is amortized
by its rank-d update. However, the saving of TC

c

m

is signif-
icant (40% to 60%) if d is small (d = 16, 64). This reflects
the fact that the GEMM-based nearest neighbor kernel is a
memory bound operation in low d. According to the table,
Var#1 does have a smaller latency during the heap selec-
tion. Given that the complexity is the same, the latency
costs can be up to 10 time smaller by reusing C at the ear-
liest opportunity. For Var#6 (k = 2048), we show that the
4-heap is 30% to 50% more e�cient than the binary heap,

d

10
1

10
2

10
3

G
F

L
O

P
S

0

50

100

150

200

248
Var#1, p=10, m=n=2048, k=16

d

10
1

10
2

10
3

G
F

L
O

P
S

0

50

100

150

200

248
Var#1, p=10, m=n=2048, k=128

d

10
1

10
2

10
3

G
F

L
O

P
S

0

50

100

150

200

248
Var#1, p=10, m=n=2048, k=512

d

10
1

10
2

10
3

G
F

L
O

P
S

0

50

100

150

200

248
Var#6, p=10, m=n=2048, k=2048

d

10
1

10
2

10
3

G
F

L
O

P
S

0

50

100

150

200

248
Var#1, p=10, m=n=4096, k=16

d

10
1

10
2

10
3

G
F

L
O

P
S

0

50

100

150

200

248
Var#1, p=10, m=n=4096, k=128

d

10
1

10
2

10
3

G
F

L
O

P
S

0

50

100

150

200

248
Var#1, p=10, m=n=4096, k=512

d

10
1

10
2

10
3

G
F

L
O

P
S

0

50

100

150

200

248
Var#6, p=10, m=n=4096, k=2048

d

10
1

10
2

10
3

G
F

L
O

P
S

0

50

100

150

200

248
Var#1, p=10, m=n=8192, k=16

d

10
1

10
2

10
3

G
F

L
O

P
S

0

50

100

150

200

248
Var#1, p=10, m=n=8192, k=128

d

10
1

10
2

10
3

G
F

L
O

P
S

0

50

100

150

200

248
Var#1, p=10, m=n=8192, k=512

d

10
1

10
2

10
3

G
F

L
O

P
S

0

50

100

150

200

248
Var#6, p=10, m=n=8192, k=2048

Figure 6 10-core floating point e�ciency comparison: m and n from top to bottom are 2048, 4096 and 8192. k from left to right are 16,
128, 512 and 2048. The X-axis is the dimension size from 4 to 1028, and the Y-axis is GFLOPS where the theoretical peak performance is
248 GFLOPS (8 ⇥ 3.1 ⇥ 10). For k = 16, 128, 512, Var#1 is used, and for k = 2048 Var#6 is used instead.

MKL+STL / GSKNN m = n = 8192, d = 16

k T

coll

+ TGEMM + T

sq2d T

heap

T

total

16 0 + 55 + 24 / 20 13 / 1 92 / 21
128 0 + 55 + 24 / 20 16 / 5 95 / 25
512 0 + 55 + 24 / 20 30 / 33 109 / 53

2048 0 + 55 + 24 / 76 52 / 34 131 / 110

MKL+STL / GSKNN m = n = 8192, d = 64

16 1 + 117 + 24 / 52 13 / 1 155 / 53
128 1 + 122 + 24 / 52 15 / 6 162 / 58
512 1 + 113 + 24 / 52 30 / 35 168 / 87

2048 1 + 126 + 24 / 94 52 / 34 203 / 128

MKL+STL / GSKNN m = n = 8192, d = 256

16 3 + 210 + 24 / 186 13 / 2 250 / 188
128 3 + 209 + 24 / 186 15 / 13 251 / 199
512 3 + 211 + 24 / 186 30 / 38 268 / 224

2048 3 + 213 + 24 / 202 52 / 34 292 / 236

MKL+STL / GSKNN m = n = 8192, d = 1024

16 9 + 702 + 24 / 665 13 / 0 748 / 665
128 9 + 734 + 24 / 665 15 / 11 782 / 676
512 9 + 728 + 24 / 665 30 / 40 791 / 705

2048 9 + 735 + 24 / 673 51 / 34 819 / 707

Table 5 Runtime breakdown analysis (ms). Due to the timer
call overhead, Theap can’t be measured accurately in Var#1 (k =

16, 128, 512); thus, Theap is estimated by the total time di↵erence
with the k = 1 case. Taking the first row (k = 16) of Table 5 as an
example, GSKNN spends 21 ms in total. The estimated heap selection
time is computed by 21 � 20 = 1 where 20 is the total execution
time of the case k = 1. For var#6 (k = 2048), Theap is measured
separately.

and that the savings on the square distance evaluations are
consistent with the term T

C

c

m

in our model.
10-core e�ciency overview: In Figure 6, we plot the

floating point e�ciency (GFLOPS) as a function of the prob-
lem size m, n, k, and d (Notice the logarithmic scale for the

horizontal coordinate). Performance (GFLOPS) increases
with problem size m, n and dimension d but degrades with
k. This is because larger m, n and d provide a higher paral-
lelism, but neighbor search only contributes to the runtime
without performing any floating point operations. To sum-
marize, GSKNN outperforms the GEMM kernel. For m large
enough (which the case in approximate search methods),
80% of theoretical peak performance can be achieved in high
d for k 128. For k = 2048, 65% of peak performance
can be achieved. GSKNN performs especially well for small
k 128, where it is up to 5⇥ more e�cient than the GEMM

kernel for d 2 [10, 100], which is commonly found in appli-
cations.

5. CONCLUSION
We demonstrate that by fusing the GEMM kernel with the

neighbor search we can significantly optimize the perfor-
mance of the kNN kernel. We discuss blocking, loop re-
ordering, and parameter selection that results in six pos-
sible algorithmic variants, which we analyze to derive the
best combination. To increase portability, GSKNN follows the
BLIS design logic which reduces the architecture dependent
part of the algorithm to the micro-kernel level. This makes
GSKNN’s portability to future x86 architectures less challeng-
ing since it only requires changing the block size and rewrit-
ing the micro kernel. Our analytical model not only helps
explain the results but also enables high-level scheduling and
tuning. Taken together, we show that GSKNN can achieve a
high e�ciency on modern x86 architectures. Ongoing work
includes extension to non-Euclidean distance metrics, ex-
tensions to GPU architectures, and integration with other
higher-level algorithms for clustering and learning.

6. REFERENCES
[1] D. Aiger, E. Kokiopoulou, and E. Rivlin,

Random grids: Fast approximate nearest neighbors
and range searching for image search, in Computer
Vision (ICCV), 2013 IEEE International Conference
on, IEEE, 2013, pp. 3471–3478.

[2] A. Andoni and P. Indyk, Near-Optimal Hashing
Algorithms for Approximate Nearest Neighbor in High
Dimensions, COMMUNICATIONS OF THE ACM, 51
(2008), pp. 117–122.

[3] J. Chhugani, A. D. Nguyen, V. W. Lee,
W. Macy, M. Hagog, Y.-K. Chen, A. Baransi,
S. Kumar, and P. Dubey, E�cient implementation
of sorting on multi-core simd cpu architecture,
Proceedings of the VLDB Endowment, 1 (2008),
pp. 1313–1324.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest,
C. Stein, et al., Introduction to algorithms, vol. 2,
MIT press Cambridge, 2001.

[5] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B.
March, P. Ram, N. A. Mehta, and A. G. Gray,
MLPACK: A scalable C++ machine learning library,
Journal of Machine Learning Research, 14 (2013),
pp. 801–805.

[6] S. Dasgupta and Y. Freund, Random projection
trees and low dimensional manifolds, in Proceedings of
the 40th annual ACM symposium on Theory of
computing, ACM, 2008, pp. 537–546.

[7] J. J. Dongarra, J. Du Croz, S. Hammarling, and
I. S. Duff, A set of level 3 basic linear algebra
subprograms, ACM Transactions on Mathematical
Software (TOMS), 16 (1990), pp. 1–17.

[8] R. W. Floyd, Algorithm 245: Treesort,
Communications of the ACM, 7 (1964), p. 701.

[9] J. Friedman, T. Hastie, and R. Tibshirani, The
elements of statistical learning, vol. 1, Springer Series
in Statistics, 2001.

[10] V. Garcia, E. Debreuve, and M. Barlaud, Fast k
nearest neighbor search using gpu, in Computer Vision
and Pattern Recognition Workshops, 2008.
CVPRW’08. IEEE Computer Society Conference on,
IEEE, 2008, pp. 1–6.

[11] K. Goto and R. A. Geijn, Anatomy of
high-performance matrix multiplication, ACM
Transactions on Mathematical Software (TOMS), 34
(2008), p. 12.

[12] GotoBLAS. https://www.tacc.utexas.edu/
research-development/tacc-software/gotoblas2.

[13] R. L. Graham, Bounds for certain multiprocessing
anomalies, Bell System Technical Journal, 45 (1966),
pp. 1563–1581.

[14] C. A. R. Hoare, Algorithm 65: find,
Communications of the ACM, 4 (1961), pp. 321–322.

[15] P. Jones, A. Osipov, and V. Rokhlin, Randomized
approximate nearest neighbors algorithm, Proceedings
of the National Academy of Sciences, 108 (2011),
pp. 15679–15686.

[16] A. LaMarca and R. Ladner, The influence of
caches on the performance of heaps, Journal of
Experimental Algorithmics (JEA), 1 (1996), p. 4.

[17] D. Larkin, S. Sen, and R. E. Tarjan, A
back-to-basics empirical study of priority queues., in

ALENEX, SIAM, 2014, pp. 61–72.
[18] M. Lichman, UCI machine learning repository, 2013.
[19] T. M. Low, F. D. Igual, T. Smith, and E. S.

Quintana-Orti, Analytical modeling is enough for
high performance BLIS, ACM under-reviewing, (2014).

[20] L. Moon, D. Long, S. Joshi, V. Tripath, B. Xiao,
and G. Biros, Parallel algorithms for clustering and
nearest neighbor search problems in high dimensions,
in 2011 ACM/IEEE conference on Supercomputing,
Poster Session, Piscataway, NJ, USA, 2011, IEEE
Press.

[21] D. Mount and S. Arya, ANN: A library for
approximate nearest neighbor searching, in CGC 2nd
Annual Fall Workshop on Computational Geometry,
1997. www.cs.umd.edu/~mount/ANN/.

[22] D. M. Mount and S. Arya, Ann: Library for
approximate nearest neighbour searching, (1998).

[23] M. Muja and D. Lowe, Scalable nearest neighbour
algorithms for high dimensional data, (2014).

[24] OpenBLAS. http://www.openblas.net/.
[25] H. Samet, Foundations of multidimensional and

metric data structures, Morgan Kaufmann, 2006.
[26] O. Sinnen, Task scheduling for parallel systems,

vol. 60, John Wiley & Sons, 2007.
[27] N. Sismanis, N. Pitsianis, and X. Sun, Parallel

search of k-nearest neighbors with synchronous
operations, 2012.
http://autogpu.ee.auth.gr/doku.php?id=cuknns:

gpu_accelerated_k-nearest_neighbor_library.
[28] T. M. Smith, R. v. d. Geijn, M. Smelyanskiy,

J. R. Hammond, and F. G. V. Zee, Anatomy of
high-performance many-threaded matrix multiplication,
in Parallel and Distributed Processing Symposium,
2014 IEEE 28th International, IEEE, 2014,
pp. 1049–1059.

[29] F. G. Van Zee and R. A. Van De Geijn, Blis: A
framework for rapidly instantiating blas functionality,
ACM Trans. Math. Softw, (2013).

[30] R. Weber, H. Schek, and S. Blott, A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces, in Proceedings of
the International Conference on Very Large Data
Bases, IEEE, 1998, pp. 194–205.

[31] B. Xiao, Parallel algorithms for the generalized n-body
problem in high dimensions and their applications for
Bayesian inference and image analysis, PhD thesis,
Georgia Institute of Technology, Atlanta, GA, USA, 8
2014.

https://www.tacc.utexas.edu/research-development/tacc-software/gotoblas2
https://www.tacc.utexas.edu/research-development/tacc-software/gotoblas2
www.cs.umd.edu/~mount/ANN/
http://www.openblas.net/
http://autogpu.ee.auth.gr/doku.php?id=cuknns:gpu_accelerated_k-nearest_neighbor_library
http://autogpu.ee.auth.gr/doku.php?id=cuknns:gpu_accelerated_k-nearest_neighbor_library

	Introduction
	Method
	GEMM Approach to k Nearest Neighbors
	Neighbor Search Algorithms
	General Stride k-Nearest Neighbors
	Micro-Kernel Implementation and Parameter Selection
	Parallel k-Nearest Neighbors Search
	Performance Model

	Experimental Setup
	Results
	Conclusion
	References

	4BEABB2A-287A-4B23-83CD-C243CF67EE54: On

