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We introduce a general-dimensional, kernel-independent,
algebraic fast multipole method and apply it to kernel regres-
sion. The motivation for this work is the approximation of
kernel matrices, which appear in mathematical physics, ap-
proximation theory, non-parametric statistics, and machine
learning. Existing fast multipole methods are asymptotically
optimal, but the underlying constants scale quite badly with
the ambient space dimension. We introduce a method that
mitigates this shortcoming; it only requires kernel evaluations
and scales well with the problem size, the number of proces-
sors, and the ambient dimension—as long as the intrinsic
dimension of the dataset is small. We test the performance
of our method on several synthetic datasets. As a highlight,
our largest run was on an image dataset with 10 million
points in 246 dimensions.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Efficiency, Algorithm de-
sign and analysis; G.3 [Probability and Statistics]: Non-
parametric statistics

Keywords
Machine learning, kernel methods, N-body problems, parallel
algorithms, data mining, kernel ridge regression

1. INTRODUCTION
Problem definition. Given a set of N points {xj}Nj=1 ∈

Rd and weights wj ∈ R, we wish to compute

ui = u(xi) =
N∑
j=1

K(xi, xj)wj , ∀i = 1 . . . N. (1)
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Here K(), a given function, is the kernel. Equation (1) is
the kernel summation problem, also commonly referred to
as an N-body problem. From a linear algebraic viewpoint,
kernel summation is equivalent to approximating u = Kw
where u and w are N -dimensional vectors and K is the ker-
nel matrix , an N × N matrix consisting of the pairwise
kernel evaluations. Direct evaluation of the sum requires
O(N2) work. Fast kernel summation can reduce this cost
dramatically. For d = 2 and d = 3 and for a wide class of ker-
nels, one can evaluate (1) in O(N logN) work (treecodes) or
O(N) work (fast multipole methods and fast Gauss transform
methods) to arbitrary accuracy [12,13].

The main idea in accelerating (1) is to exploit low-rank
blocks of the matrix K. Hierarchical data structures reveal
such low-rank blocks by rewriting (1) as

ui =
∑

j∈Near(i)

Kijwj +
∑

j∈Far(i)

Kijwj , (2)

where Near(i) is the set of points xj for which K is evaluated
exactly and Far(i) indicates the set of points xj for which K
is approximated. The first term is often referred to as the
near field and the second as the far field for the point xi.
Throughout, we refer to a point xi for which we compute ui
as a target and a point xj as a source with weight (or charge)
wj . Treecodes approximately evaluate the “j ∈ Far(i)” term
in O(logN) time per target; fast multipole methods (FMM)
evaluate it in O(1) time per target.

Significance. The FMM1 and treecodes were originally
developed to accelerate the solution of partial differential
equations in dimension d ≤ 3 [14]. Now their applicabil-
ity spans several scientific domains: they are used in geo-
statistics [5], non-parametric statistics [29], machine learn-
ing [11, 17], approximation theory [30], Gaussian process
modeling [25], and data assimilation [18]. These problems
are often characterized by unconventional kernels and high
ambient dimension d.

The algorithms and theory for the complexity and accuracy
of fast multipole methods hold true for any arbitrary dimen-

1We will be using the term “fast multipole methods” loosely
to refer to all methods for which that the complexity of
the evaluation phase is O(N). The fast Gauss transform is
another example.
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sion. However the constants in the complexity estimates for
both error and time do not scale well with d. For example, the
constants in the original FMM [12], the kernel-independent
FMM [34], and the generalized fast Gauss transform [27]
scale exponentially with d. Modified algorithms like those dis-
cussed in [15] have constants that scale polynomially in d, but
those methods are kernel-specific and either too expensive
or too inaccurate for large ambient dimension d [21].

In [22], we introduced ASKIT (Approximate Skeletonization
Kernel-Independent Treecode) and in [24], we introduced
the parallelization of ASKIT (summarized in §2). In those
works we made three notable contributions: a novel algebraic
way to approximate the far field through the use of nearest-
neighbor information, a new pruning method, and more
efficient algorithms for the construction of the necessary data
structures. ASKIT’s most important property is that accurate
far-field approximations can be constructed with complexity
that scales linearly with d for any accuracy level—depending
only on the analytic properties of the kernel and the intrinsic
dimension dintr of the dataset.2 Another property of ASKIT
is its kernel independence. The kernel function has to admit
low-rank factorizations of blocks in Far(i) in Eqn. 2 but does
not need to be the solution of a PDE or be symmetric, e.g. it
can be a variable-bandwidth Gaussian function.

Contributions. To our knowledge, there exists no scal-
able FMM that is kernel independent and whose complexity
constant in the construction of the far field approximation
is scalable with d. Here we propose and implement such a
method.3 In detail, the novelty of this paper can be summa-
rized as follows:

• We introduce ASKIT-FMM, an algorithm that scales well
with d, is kernel-independent, and whose approximation
of the far field scales linearly with d (provided that
dintr � d) in §2.2. Depending on the problem, the
original ASKIT algorithm may require more than 10×
more evaluations compared to our new FMM code
(§4, Table 2) for the same accuracy. We discuss the
complexity and accuracy of the scheme in §3.
• We introduce several algorithmic innovations to both
ASKIT-FMM and the original ASKIT, resulting in im-
proved performance for both: improved tree construc-
tion, adaptive far-field approximation, blocking and
FLOP-optimized kernel evaluations for x86 architec-
tures, and level restriction (explained in §2.3). Taken
together, these algorithms boost the overall accuracy
and performance of the method and result in 20×
speedups over our previous work (§4, Table 3). In addi-
tion, the new code supports different source and target
sets.
• We present scalability results for four different kernels

and for several real and synthetic datasets. Also, we
present the application of ASKIT-FMM to a supervised
learning task: kernel regression for binary classification
of medical image data. This problem features many of
the characteristics found in real applications: it requires
solving linear systems with the kernel matrix, perform-

2Many high-dimensional data sets can be accurately captured
by a smaller set of (unknown) features. We refer generically
to the size of this feature set as intrinsic dimension. For
example, the intrinsic dimension of a set of points distributed
on a curve in three dimensions is one.
3Our code is available at:
http://padas.ices.utexas.edu/software

ing cross-validation and regularization, and amortiza-
tion of setup costs across several evaluations. These
results are discussed in §4.

Limitations. Although we have mitigated the dimension-
ality problem, we have not resolved it. The crossover N for
which ASKIT-FMM is faster than the direct O(N2) method
rapidly increases with dintr and accuracy requirements. An-
other problem is that the construction of the far-field approx-
imation is quite expensive. Also, the method is not effective
for oscillatory kernels (e.g., Helmholtz kernels). Although,
we report results in two and three dimensions, we do not
advocate the use of ASKIT-FMM for such problems. In low
dimensions, much more efficient methods exist for all the
kernels we consider here.

Related work. In [22,24], we extensively review the lit-
erature regarding classical and general dimensional N-body
methods. The most relevant publications to this work are [8]
in low dimensions and [15] and [19] in high dimensions. Fur-
ther discussion on the merits and shortcomings of these
methods can be found in [24]. An entirely different line of
work for high-dimensional kernel summations is the Nystrom
method [20, 31]. This method constructs global low-rank
approximations of the kernel matrix K and can be very ef-
ficient; however, not all kernel functions result in matrices
that have a global low-rank structure [23]. Its comparison
with ASKIT-FMM merits a thorough study, which is beyond
the scope of this paper.

2. METHODS
Notation. We use sets to index vectors and matrices,

such as u(S) to refer to the entries of vector u corresponding
to entries in some set S. We consider a binary, balanced,
space partitioning tree with m points per leaf node. We use
X for the data set, α to refer to a tree node, Xα to refer to
the points in α, and Sα to refer to its skeleton points (§2.1).
We use w̃ for the skeleton weights and ū for the skeleton
potentials. We use l(α) and r(α) to refer to the children of
α. We use A(α) for the ancestors of α, MORTONIDS(S)
for the Morton IDs of points in a set S, and SIBLINGS(S)
for the siblings of nodes in S. We use Ni for the list of the
κ nearest neighbors of point i and Nα for the union of the
neighbor lists of all of the points in α. We will use Near(i)
for the set of tree nodes which are evaluated directly with a
target i and Far(i) for those approximated.

2.1 ASKIT Review
ASKIT, first presented in [22] and in parallel in [24], is

a general dimension, kernel-independent treecode method.
Here, we briefly review this method before focusing on the
new features added in this paper.

Outgoing representation. A key feature of a treecode
is the outgoing representation—the method used to approx-
imate the contribution of the far field in (2). The classical
FMM constructs the representation from series expansions of
the kernel function. ASKIT uses an outgoing representation
which requires no prior knowledge of the kernel function and
scales with d.

Consider a leaf node α, and let G = K(X \Xα,Xα) – i.e. G
is the (N −m)×m block of K with columns corresponding
to source points in α and rows corresponding to all points
not in α. Our task is to efficiently compute a low-rank
approximation of G. We refer to the construction of this

http://padas.ices.utexas.edu/software


representation as skeletonization.
The rank-s Interpolative Decomposition (ID) [6] of G is a

factorization

G ≈ GcolP, (3)

where Gcol consists of s columns of G. In other words, the
ID approximates the matrix in a basis of its columns. We
refer to the source points which correspond to the columns
of Gcol as the skeleton points of α, Sα. We also compute the
skeleton weights w̃ = Pw.

Then, we compute the contribution of node α in Far(i) for
some target i as

ũ(i) = K(xi,Sα)w̃ (4)

in O(s) work by representing the source charges and points
with effective charges at only the skeleton points.

Random sampling to compute the ID. We compute
the ID from a pivoted, rank-revealing QR factorization of
G. However, for a single leaf node, this requires O(Nm2)
work, which is greater than simply computing Gw directly. In
order to overcome this, we employ a randomized approach, in
which we sample ` rows of G and use them to approximately
skeletonize G in `m2 work. But how should we sample rows?

Sampling uniformly at random is easy but inaccurate; im-
portance sampling is accurate but expensive [20,21]. We use
a hybrid approach that borrows from both these approaches.
We sample using the κ nearest neighbors of each point. We
then construct a matrix G whose rows correspond to the `
closest neighbors to the source points being skeletonized. If
additional samples are required, we choose them uniformly
at random. See [21] for a more thorough exploration of this
sampling scheme.

Nearest neighbors. The nearest-neighbors of all points
can be computed exactly or approximately (in high d) using
randomized projection methods [1,7,11,32]. For simplicity,
we consider the nearest neighbors to be an input to ASKIT,
since they can be pre-computed by any method.

Outgoing-to-outgoing translation. Given the outgo-
ing representations of two sibling nodes, we form the rep-
resentation for their parent. We merge the two skeletons
to obtain 2s points. We form another matrix G with 2s
columns corresponding to these points, and we again collect
rows from nearest neighbors and uniformly sampled points.
We obtain s skeleton points (which are a subset of the child
nodes’ skeletons) and weights by computing an ID of this
matrix. We illustrate this in Figure 1.

Pruning rule. ASKIT also uses a different method for the
near-far field decomposition. Most treecodes use some ex-
plicit distance-based criterion for this split, typically based on
the convergence of the series expansions used for the outgoing
representation. While this is effective for low dimensional
problems, it will not scale with increasing d.

Instead, ASKIT uses the nearest neighbors of each point to
define the pruning rule. For each target, we assume we have
its κ nearest neighbors. We prune a node if it does not own
any of these neighbors.

Morton IDs. The Morton ID of a node is a bit string
that encodes the path from the root to the node. The ith

bit of the Morton ID of a node is 1 if the node’s ancestor at
level i is the right child of its parent and 0 otherwise. We
assign a point the same Morton ID as the leaf which owns it.

A node’s Morton ID and level are sufficient to uniquely
identify it in the tree. We collect the Morton IDs of the near-
est neighbors of each target point. Then, we can construct

(a) Leaf node. (b) Internal node.

Figure 1: We illustrate the skeletonization of nodes in
ASKIT. In Figure 1(a), we show the skeletonization of a leaf
node. The triangles highlight the points in the leaf, which cor-
respond to the columns of G. We collect the nearest neighbors
of these points, marked with squares. We also sample addi-
tional distant points uniformly at random (circles). These
points correspond to the rows of G. We then compute an ID
of this matrix to select skeleton points. For an internal node
(Figure 1(b)), we merge the skeleton points and the neighbor
lists of the children to form G. The resulting skeleton is a
subset of the children’s skeletons.

the near and far field interaction lists:

Near(i) = MORTONIDS(Ni)
Far(i) = SIBLINGS(A(Ni)) \ A(Ni) (5)

ASKIT. We see that the major components of ASKIT

(Alg. 1) are: 1) skeletonization (line 3), in which we traverse
the tree bottom-up to construct the skeleton of each node;
2) list construction (line 4) in which we form the interaction
lists for each node; and 3) evaluation (line 5), in which we
actually compute the kernel evaluations and the approximate
potentials, using:

u(i) =
∑

α∈Near(i)

K(xi,Xα)wα +
∑

α∈Far(i)

K(xi,Sα)w̃α. (6)

Algorithm 1 ASKIT(Dataset X )

1: Read nearest neighbor info for all points in X
2: Construct space partitioning tree αroot

3: Skeletonize(αroot) – Alg. 2
4: ConstructInteractionLists – Eqn. 5
5: Evaluate – Eqn. 6

Algorithm 2 Skeletonize(α)

1: if α is not a leaf
2: Skeletonize(l(α)); Skeletonize(r(α))
3: Xα = Sl(α) ∪ Sr(α)
4: Nα =

(
Nl(α) ∪Nr(α)

)
/Xα

5: Collect the closest ` points in (Nα ∪ uniform) into Tα
6: Form G = K(Tα,Xα) and compute ID GcolP
7: Store skeleton Sα and skeleton weights w̃α

2.1.1 ASKIT in Parallel
Our parallel implementation of ASKIT uses a hybrid MPI /

OpenMP scheme with p distributed processes, where p is a
power of two.



For the construction of the space-partitioning tree, we refer
the reader to [24, 33]. For the remainder of our discussion,
we only point out that the parallel tree construction assigns
N/p points to each process, which form a subtree. We refer
to this subtree as the local tree. We refer to the portion
of the tree above level log p as the distributed tree. After
tree construction, each processor has the Morton IDs and
coordinates of the nearest neighbors of all of its points.

Skeletonization. Within the local tree, we proceed in a
level-by-level fashion from the leaves to the local root. The
skeletonization of each node in a level is independent of all
other nodes at that level, so these can be assigned to different
threads. Skeletonization of the distributed tree is computed
as a reduction from level log p up to the root.

Evaluation with a local essential tree. Each process
computes the potential for all targets in its local tree, so
it needs the contents of all nodes in Near(i) and Far(i) for
every target i it owns.

We collect all of these nodes into a local essential tree [28].
Let Xp be the set of all points owned by process p and Np
be the set of all nearest neighbors of Xp. Then, let L be the
set of all leaves containing points in Np \ Xp. The LET is
the set of nodes

LET = L ∪ [∪α∈L [SIBLINGS(A(α)) \ A(α)]] (7)

Since the Morton ID and level of a node uniquely identify
it, and since each process has the Morton IDs of all of the
nearest neighbors of its target points, it can identify locally
the nodes it needs for its LET.

Each node can then obtain the skeletons and coordinates of
these nodes in two communication phases. First, an all-to-all
primitive allows each process to send its node requests to all
other processes. Then, in a second all-to-all, each process
answers these requests with either the point coordinates and
charges (for a leaf node), or skeleton points and skeleton
weights (for an approximated node). Once each process has
the contents of its LET, it can evaluate its potentials in
parallel over targets or blocked interaction lists (§2.3).

2.2 ASKIT-FMM
Here, we give our new extension of ASKIT to an FMM-like

algorithm. In addition to the outgoing representation, which
compactly represents a large group of source points, an FMM
requires an incoming representation to summarize a group
of target points and an outgoing-to-incoming translation
between nodes.

Incoming representation. As before, we require a low-
rank approximation of a matrix G = K(Xα,X \ Xα)—the
m× (N −m) matrix of interactions between all targets in a
leaf node α and all distant sources. We use the ID to build
an incoming representation as well, using rows of the matrix
as the basis:

G ≈ EGrow. (8)

Note that when the kernel function is symmetric, this matrix
is the transpose of the one approximated for the outgoing
representation. In this case, we use the same points for both
skeletons, and use E = PT 4.

Then, for target points in α and some source points xi, we
compute skeleton potentials at the incoming skeleton points

4 For non-symmetric kernels, we need to perform two inter-
polative decompositions for each node, one for each of the
incoming and outgoing representations.

(a) Leaf. (b) Internal node.

Figure 2: We illustrate the FMM interaction lists. In
Fig. 2(a), we highlight in green and blue colors the nodes in
the list FMMFar for the leaf node in magenta with blue target
points. The interactions between it and all of the highlighted
nodes can be approximated by only computing kernel interac-
tions between its skeleton points and the skeleton points of the
green and blue nodes. In Fig. 2(b), we show the list FMMFar
for the parent of the target leaf in 2(a). Since all the points
in both children can prune the nodes highlighted in green and
blue, they can interact approximately with the skeleton of
the magenta parent. The resulting skeleton potentials will be
passed down with Alg. 4.

due to some set of source points as

ū(Sα) =
∑
j

K(Sα, xj)wj . (9)

We can then obtain the approximate potentials at the re-
maining target points by computing u = PT ū.

FMM interaction lists. In ASKIT-FMM, the skeletoniza-
tion phase proceeds exactly as in the treecode version (Alg 2).
The differences begin with the formation of the interaction
lists. In a classical FMM, target nodes only interact with
source nodes at the same level. Since ASKIT uses an irregular,
combinatorial pruning criterion, we use a different approach.

We begin by forming the interaction lists Far(i) for each
target i in (5), which can be done in parallel. We then merge
the lists from leaves up the tree, once again in parallel within
each level (as in skeletonization). Concretely, for a leaf node
α, we compute a list5

FMMFar(α) = ∩i∈αFar(i). (10)

We then remove the merged nodes from each target list:

Far(i) = Far(i) \ FMMFar(α). (11)

We show this method for both leaves and internal nodes in
Alg. 3 and illustrate it in Figure 2.

Outgoing-to-incoming translation. We now modify
the evaluation phase described in (14). The evaluation for
Near(i) and Far(i) proceeds exactly as before. For the new
list FMMFar, we compute an incoming representation (skele-
ton potentials for the skeleton of node α) from the outgoing
representation of node β in FMMFar(α) as

ū(Sα) += K(Sα,Sβ)w̃β . (12)

Incoming-to-incoming translation. We obtain the fi-
nal potentials through an additional top-down pass through

5 This list is similar to the V -list in the classical FMM, but
it can contain nodes at many different levels of the tree.



the tree (Alg. 4). We apply PT to the skeleton potentials for
each internal node to obtain the skeleton potentials for the
child nodes. At the leaf level, an additional application of PT

gives the potential. Once again, this step can be performed
in parallel across different nodes in the same level of the tree.

ASKIT-FMM in parallel. ASKIT-FMM requires no ad-
ditional communication for a parallel implementation. The
merging of interaction lists is done locally on each process
across each level and in parallel within a level. The evalua-
tion phase only requires skeletons and points that are in the
treeecode version LET, so we can re-use the same approach
for the FMM—i.e. the LET’s for ASKIT and ASKIT-FMM are
the same requires no change. The skeleton potentials are only
passed down locally, so this requires no extra communication
as well and can again be done in parallel within each level.
Our current implementation does not merge interaction lists
for nodes in the distributed tree.

Algorithm 3 FMMInteractionLists(Dataset X , αroot)

1: parfor all target points i
2: Near(i) = MORTONIDS(Ni)
3: Far(i) = SIBLINGS(A(Ni)) \ A(Ni)
4: parfor all leaves α
5: FMMFar(α) = ∩i∈αFar(i)
6: Far(i) = Far(i) \ FMMFar(α)
7: for all non-leaves α // in parallel on each level
8: FMMFar(α) = FMMFar(l(α)) ∩ FMMFar(r(α))
9: FMMFar(l(α)) = FMMFar(l(α)) \ FMMFar(α)

10: FMMFar(r(α)) = FMMFar(r(α)) \ FMMFar(α)

Algorithm 4 IncomingToIncoming(tree αroot)

1: for level ` from 0 to log(N/m) of αroot

2: parfor all nodes α at level `
3: if α is not a leaf
4: [ū(l(α)), ū(r(α))] += PTα ū(α)
5: else u(α) += PT (α)ū(α)

2.3 ASKIT Improvements
We now turn to our other improvements to ASKIT and

ASKIT-FMM introduced in this paper.
Adaptive rank skeletonization. Previously, we chose

the skeleton size s as an input parameter. The new algorithm
estimates the singular values of the off-diagonal block G and
uses them to choose an approximation rank.

We specify a rank tolerance parameter τ . When skele-
tonizing, we construct the subsampled off-diagonal block
G as above. We compute a rank-revealing QR factoriza-
tion GΠ = QR. We then employ the diagonal entries
Rj of R as an estimate for the spectrum of G. We set
s = arg minj |Rj+1/R1| < τ . We also specify a maximum
rank smax. If the adaptively selected rank is greater than
smax, we use a rank smax decomposition instead.

Level restriction. In the level restricted version of ASKIT,
we do not construct skeletons or prune any nodes above tree
level L (with the root being level 0). This increases the
accuracy of ASKIT, since it uses more skeleton points per
target point but at a higher cost. In effect, level restriction
allows us to trade additional work for increased accuracy.
ASKIT-FMM can reduce this extra cost as we will see in the
results section. We illustrate this restriction in Figure 3.

(a) L = 0. (b) L = 3.

Figure 3: We illustrate level restriction in ASKIT. We
highlight a single target point in red, then show the evalua-
tions required for two different values of the level restriction
parameter L. We show skeleton points which interact with
the target with diamonds and use different colors to indicate
different levels. We show the direct evaluations with blue dots.
Note that the level restricted version in Figure 3(b) interacts
approximately with more nodes than in Figure 3(a), but each
skeleton approximates fewer points. The direct interactions
are the same in both cases.

In terms of (5), we split any nodes in Far(i) that are above
level L and add all of their descendants at level L to Far(i).

Reduced neighbor and skeleton communication. In
the previous version of ASKIT, we exchanged the coordinates
for the skeleton points for each node in the LET. However,
each skeleton point at some level in the tree also appears as a
skeleton point at each level below. In practice, the LET will
often contain many of these nodes. Our updated implemen-
tation only exchanges and stores one copy of the coordinates
of any skeleton point, thus reducing the storage and commu-
nication costs, particularly when d is large. Additionally, our
previous implementation maintained a separate copy of the
coordinates of nearest neighbors and points communicated
in the LET. We have eliminated this extra storage, allowing
our LET code to scale much better with larger values of κ.

Blocking kernel evaluations. In [24], we introduced an
efficient method for computing kernel interactions based on
blocking the interaction lists. Concretely, for each source
node α, we compute lists

Near(α) = {i : α ∈ Near(i)}
Far(α) = {i : α ∈ Far(i)} (13)

The evaluation phase then consists of iterating over all nodes
α and computing:

u(Near(α)) += K(Near(α),Xα)wα
u(Far(α)) += K(Far(α),Sα)w̃α

(14)

In our previous work, we explored the efficient evaluation
of the inverted near-field list on a GPU, while we computed
the far-field list on the CPU. In this paper, we take advantage
of the fact that interactions in all three lists are simply kernel
matrix-vector products. We merge these lists into a single
interaction list and employ a new, efficient kernel summation
library to carry out these products [35]. While the details
will be presented elsewhere, we mention that the kernel
evaluations are heavily optimized for x86 architectures.

The blocked calculation over Far(α) and FMMFar(α) re-



quires collecting the skeleton weights w̃ into contiguous mem-
ory. We store the tree nodes in a pre-order traversal. After
the skeletonization phase, we use a parallel scan to allocate
space for these weights, then another parallel loop to store
them in the allocated memory. We also need to allocate
additional contiguous storage for the skeleton potentials in
ASKIT-FMM.

Repeated applications of K. In practice, kernel meth-
ods often require the solution to a linear system using the
kernel matrix. In the absence of a direct solution method,
iterative methods are needed. ASKIT-FMM is well-suited to
the repeated application of K to new right hand sides. Ini-
tially, we compute the skeleton of each node, construct the
interaction lists, and exchange the LET.

We store the matrix P used in skeletonization. Given a new
charge vector, we update the skeleton weights in a bottom-up
tree traversal (Alg. 5). (In the distributed tree, we can collect
potentials from children in a distributed reduction.) At each
node, we compute a matrix-vector product Pwα. Note that
we do not have to compute any additional QR factorizations,
which are the dominant cost for the skeletonization phase.

Algorithm 5 UpdateCharges(tree αroot)

1: for level ` from log(N/m) to 0 of αroot

2: parfor all nodes α at level `
3: if α is not a leaf
4: wα = [w̃(l(α)), w̃(r(α))]
5: w̃(α) = Pαwα

We then need to communicate the new source and skele-
ton charges to each node which has them in its LET. This
communication complexity is similar to that for the original
LET, but lacks the factor of d since no coordinates need to be
communicated. Finally, we simply compute the evaluation
phase in (14). We can store the blocked interaction lists
between interactions, since they require no updates.

Distinct target and source sets. So far, we have as-
sumed that the source and target sets are the same. Since we
apply ASKIT-FMM to supervised learning tasks, we consider
the case where we first use the same target and source sets
(the training phase), then add a new target set and compute
potentials for points in it (the testing phase).

The training phase proceeds exactly as in Alg. 1. We then
load the new test set and the κ nearest neighbors of each
test point in the training set. We assign each test point the
Morton ID of the leaf node that owns its nearest neighbor.
For each new test point, we form interaction lists using the
nearest neighbor list, exactly as in the training phase (5) and
invert them as in (13).

We then update the LET with any nodes that were not
previously part of any interaction list. Note that this step is
not required in classical FMM methods. In general, however,
most of the nodes needed in the test LET will already have
been obtained for the training LET. We only communicate
any new nodes required. Adding new test points does not
require any additional skeletonization.
ASKIT-FMM for testing points requires the ability to trans-

late skeleton potentials on the skeleton points of a leaf node
to the testing points in that node. While this mapping can
be constructed from an additional ID, we leave the discussion
of this method to future work.

3. THEORY
We summarize the existing complexity and error results

for ASKIT and present new results for ASKIT-FMM.
ASKIT-FMM error. Here we use some additional notation:
D = logN/m for the tree depth and n = N/p for the number
of points per MPI process. We derived error bounds for
ASKIT in [22], and now extend them to the ASKIT-FMM. Due
to space limitations we cannot present the details of the
derivation here. The results below should be interpreted as
worst-case estimates.
ASKIT constructs low-rank approximations of off-diagonal

sub-blocks of K (§2.1), denoted by G. The accuracy of the
approximation is mainly controlled by the rank used in the
ID and the sampling error. The former depends on the decay
of the singular values of G [6, 16] and is controlled by s and
τ in our algorithm. The sampling error is controlled by the
sampling size and the quality of the samples. Increasing
the number of nearest neighbors improves the quality of the
samples chosen to form the ID and increases the number of
direct evaluations performed—both of which result in higher
accuracy and higher costs. ASKIT-FMM has one additional
possible source of error—the approximation of the incoming
representation. We can show that the overall error bound
does not change, only the constant prefactors do. Essen-
tially, if σs+1 is the largest error incurred in the low-rank
approximation of any G, then the error behaves as

‖K −Kaskit−fmm‖2 ≤ σs+1D. (15)

ASKIT complexity. Here we summarize the results found
in [22, 24]; ts will be the latency, tw the reciprocal of the
bandwidth; and we will assume a hypercube topology and
that a single kernel evaluation requires O(d) work.

We first construct the tree in parallel, then we create
the skeletonization (outgoing and incoming representations),
then construct the local essential tree, and finally we evaluate
in an embarrassingly parallel manner.
• Parallel tree construction (without the LET) was discussed
in detail in [32,33] and requires

(ts + tw) log2 p logN + (tw log p) (d+ κ)n

time. The storage is O(dκn).
• Skeletonization requires O(ds2 + s3) work for an internal
node and O(dsm + sm2) work for a leaf (with ` = O(s)).
Nodes deeper than log p level require no communication;
closer to the root we use a reduction in which we combine
the skeletons of two sibling nodes by exchanging a O(ds)-
length message. Thus, the communication is bounded by
O((ts + tw)sd log p). Since we have a total of 2(n/m+ log p)
nodes per MPI process, and assuming that m ≤ s (to simplify
the expressions), the total skeletonization time is( n

m
+ log p

)
(ds2 + s3) (16)

and the storage cost is s2n+ (ds+ s2) log p.
• LET construction complexity estimates are based on the
fact that for any target i, the number of nodes in the near
and far interaction lists is given by

|Near(i)| = O(κ)
|Far(i)| = O(κD).

(17)

In the worst case, every node in Near(i) and Far(i) for every
target point i must be received from another MPI process.



Thus, the worst case of the communication during the LET
exchange is

tsp+ twdκ(m+ sD)n. (18)

The LET requires additional storage of size dκ (m+ sD)n.
Note that these bounds are pessimistic if dintr � d since they
ignore overlaps between the lists.
• Evaluation is embarrassingly parallel once we have the
LET. Its time complexity is given by

dnκ(m+ sD). (19)

Complexity of ASKIT-FMM. The construction and skele-
tonization phases are identical to ASKIT’s. What differs is
the construction of the FMMFar for each node and the evalu-
ation. To construct the FMMFar lists for every node we use
Alg. 3, which requires merging m lists of size O(κD) at the
leaves and then a bottom-up recursive merging of the lists
of siblings. The work is O(κDN) and is part of the setup
phase.

During the evaluation phase, we first convert the outgo-
ing representations to incoming representations incurring a
ds2 cost per entry of FMMFar. Passing the skeleton poten-
tials down the tree (Alg. 4) is an s2 calculation per node.
Finally, for every target point i, we perform s evaluations
for every node in Far(i) that could not be merged into the
FMMFar of the leaf that contains i. Thus, the total evalua-
tion cost comprises the cost of the direct interactions plus
the outgoing-to-incoming interactions plus the outgoing-to-
target interactions. The last two terms are hard to estimate.
To simplify the discussion, we introduce ζ as percentage of
evaluations done using the outgoing-to-incoming interactions
and obtain

dn(κm+ ζs2/m+ (1− ζ)sκD) (20)

for the time complexity of the evaluation, where the first
term is from nodes in Near, the second is from nodes in
FMMFar, and the third is from nodes in Far that could not
be merged.

On one hand, if κ = 1, pruning is perfect. Every target has
its own leaf node in Near and all the siblings of its ancestors
in Far. In this case, the FMM interaction list FMMFar(α)
always consists of the sibling of α. Thus, ζ = 1 and the
overall evaluation cost is O(nd(κm+ s2/m)).

On the other hand, there may be no overlap between the
interaction lists for the targets in a node. This can happen
when both dintr and κ are very large, for instance. In this
case, we may not be able to remove any entries from Far,
leaving FMMFar empty and resulting in ζ = 0. However,
the evaluation phase in this case is no more expensive than
in the treecode version of ASKIT in (19).

As a third case, consider a classical convergence analysis of
fast multipole methods, but with a twist: assume dintr � d.
In dintr dimensions, every node has ≈ 3dintr nodes nearby.
Thus, we expect |FMMFar| = max(0, κm(D−3dintr)) and one
can generalize this expression to interior nodes. In this case,
for any dintr as N increases, the size of FMMFar will grow, ζ
will tend toward one, and we obtain an O(N) method. This
result is not surprising as it echoes known FMM results in
dintr dimensions. The main point is that unlike the classical
FMM, ASKIT-FMM “sees” only dintr, not d. ASKIT-FMM does
not require that dintr is flat or on a manifold, although the
presence of a high curvature complicates the analysis since
it introduces scale effects.

• Level restriction: When we restrict the level to L, all the
formulas remain the same, we only have to replace D with
D−L+2L. Equation (15) for the error becomes σs+1(D−L),
with a smaller σs+1 since the maximum errors occur near the
root where skeletons approximate more points. The error
improves but the time complexity increases and the LET
requires more storage.

Next, we report experimental results that give a sense for
the behavior of our method in high dimensions and in real
applications.

4. EXPERIMENTS
We study the performance of the new ASKIT and ASKIT-FMM

for different kernels, parameters, and datasets. To demon-
strate the workflow and overall costs of applying ASKIT-FMM

to an application, we report results for kernel regression.

Dataset kNN
name N d κ iter hit rate Error
SUSY 4,500,000 18 2,048 100 98% 8E-4

HIGGS 10,500,000 28 2,048 100 91% 3E-2
BRAIN 10,584,046 246 2,048 31 >99% 4E-4

Table 1: The data sets used in our experiments. N is the
training set size and d is the dimension. We give the number
of iterations, hit rate, and error for our approximate nearest
neighbor search. See [33] for details.

Datasets and machines. (Table 1) We use points sam-
pled from a uniform distribution in the unit hypercube in
2D and 3D (“Uniform”). We also uniformly generate points
in 6D and then embed them in 64D (“Uniform 64D”). From
high-energy physics, we use the “HIGGS” and “SUSY” sets
from the UCI Machine Learning repository [2]. These sets
correspond to a learning task to classify high-energy parti-
cles [4]. We also use a set of features obtained from brain
medical images. Since, ASKIT needs nearest neighbors, for
each dataset we report the number of iterations and neighbor
distance accuracy. The nearest neighbors were computed
with the randomized KD-tree search scheme described in [33].

Setup. All tests took place on the Maverick and Stampede
clusters at the Texas Advanced Computing Center. Maverick
nodes have two Intel Xeon E5-2680 v2 (2.8GHz) CPUs and
256GB RAM. Stampede nodes have two Intel Xeon E5-2680
(2.7GHz) CPUs and 32GB RAM. All tests were done in
double-precision arithmetic. Our C++ implementation uses
OpenMP, MPI, MKL, and vectorization using x86 intrinsics.

Kernels. We show results for the following kernel func-
tions K(x, y) (omitting normalization constants):

Gaussian exp
(
−‖x− y‖2/(2h2)

)
Laplace ‖x− y‖2−d

Matern
(√

2ν‖x− y‖
)ν
Kν

(√
2ν‖x− y‖

)
Polynomial

(
xT y/h+ c

)p
The Gaussian is parameterized by the bandwidth h. The

Laplace is valid for d > 2. The Matern kernel [30] is parame-
terized by ν; Kν is the modified Bessel function of the second
kind. The polynomial kernel is parameterized by degree p,
bandwidth h, and constant c. We use an optimized imple-
mentation [35] for the Gaussian and Laplace kernel functions.
Our Matern kernel implementation uses the GSL library [10]



Uniform 2D Uniform 64D (6ID) SUSY HIGGS
# κ 1M 4M 16M 1M 4M 16M 4.5M 10.5M

L = 4
1 1 14% 13% 11% 14% 13% 11% 12% 12%
2 32 38% 35% 32% 89% 85% 81% 91% >99%
3 128 42% 38% 36% 94% 91% 88% 95% >99%

L = 9
4 1 53% 13% 4% 53% 13% 4% 12% 5%
5 32 53% 15% 5% 62% 15% 16% 32% 76%
6 128 54% 15% 5% 66% 15% 21% 39% 86%

Table 2: Kernel independent experiments. We show the fraction of kernel evaluations done in ASKIT-FMM compared
to the treecode for several data sets and values of κ. The column “#” labels rows for reference in the text. Here, we fix the
skeleton rank s = 1024 and leaf size m = 128. The first block of results correspond to L = 4 and the second to L = 9. In
these experiments, the interaction lists are completely kernel independent.

# Alg. εr Tskel Tlist TLET TE

7 IPDPS 1E-01 18 1 5 20
8 FMM 6E-02 11 6 8 6
9 FMM, Adaptive 1E-01 1 6 4 1

Table 3: We compare results on the SUSY data between
our work and [24], Table IV, last row. The column “#” labels
rows for reference in the text, “Alg” identifies the treecode
or FMM variant. The remainder of the columns are timings
in seconds: Tskel is the skeletonization time, Tlist is the time
to form, invert, and merge the interaction lists, TLET is the
time to construct and exchange the LET, and TE is the time
for the evaluation phase. All experiments use a Gaussian
kernel with h = 0.15 and m = 512, s = 512, κ = 64, and
` = s. The charges are all 1/

√
N and the reported error is

the relative error |u− ũ|/|u| averaged over 1,000 evaluation
points. The adaptive rank experiment uses τ = 0.1. All
experiments use 32 nodes of Maverick with 2 MPI processes
per node and 10 OpenMP threads per process.

to evaluate the Bessel functions and BLAS to compute kernel
matvecs. Our polynomial kernel implementation uses BLAS
for both steps.

Kernel matvec approximation experiments. We
measure the accuracy and time of ASKIT and ASKIT-FMM.
We are interested in the accuracy of our approximated po-
tential ũ = K̃w for a given charge vector w. We report the
relative error ε2 = ‖Kw − K̃w‖2/‖Kw‖2. Since the exact
Kw is prohibitively expensive, we sample ns = 1, 000 en-
tries of u and report ε2 for this subset. Unless otherwise
noted, we use charges w drawn from a standard normal
distribution and average our results over 10 independent
charge vectors. To compare with [24], in Table 3 we report
εr = n−1

s

∑
i |ui − ũi|/|ui|. Next we discuss our results. We

use the run ID (“#” in the tables) to identify a run. In
all experiments except Table 3, we use the improvements
described in §2.3 for both ASKIT and ASKIT-FMM.

Comparison to [24]. We present a brief comparison
between the ASKIT-FMM and the implementation of ASKIT

used in Table 3. Row 7 is taken directly from the last row of
Table IV in [24] and does not employ any of the optimizations
described in §2.3. We compare it to ASKIT-FMM with fixed
rank (#8) and adaptive rank (#9). ASKIT-FMM delivers a
drastically faster evaluation phase (20x faster for #9 with
no increase in error). The list construction is somewhat
unoptimized and it shows. The LET exchange is slightly

# Alg L ε2 TE #K
10 Tree 2 1E-05 33 68,382
11 FMM 2 8E-06 34 65,119
12 Tree 4 1E-06 40 87,159
13 FMM 4 1E-06 37 71,084
14 Tree 6 3E-07 80 178,131
15 FMM 6 3E-07 46 88,311
16 Tree 8 4E-08 257 561,957
17 FMM 8 5E-08 73 143,931

Table 4: Experiments for Uniform 64D (6 intrinsic),
N = 16E6 data and Gaussian kernels with varying level
restrictions. The column “#” labels rows for reference in
the text, “Alg” identifies the treecode or FMM variant, “L”
is the level restriction parameter, TE is the evaluation time
in seconds, and #K is the number of kernel evaluations
per target. We use a Gaussian kernel with h = 0.7 and set
κ = 32, m = 512, and s = 2048 in all experiments. For the
experiment in row 11, the skeletonization time is 3500s, list
construction takes 47s, and the LET exchange takes 29s. All
experiments are on 16 nodes of Maverick with 20 OpenMP
threads per node.

slower in #8 than in #7, but #7 requires more storage. The
adaptive skeletonization in #9 is much faster because the
QR factorizations required are smaller.

Kernel evaluations in FMM. Another important issue
the number of kernel evaluations when switching from the
treecode to the FMM. In Table 2, we study this effect as
a function of L, κ, and the dataset. We use fixed rank s.
These results hold for any kernel function since they only
depend in the s and κ parameters.

We see that increasing κ always requires more interactions
for ASKIT-FMM. This is because the larger neighbor lists result
in decreased opportunities for list merging in Alg. 3. Similarly,
we see that increasing d also harms the performance of ASKIT-
FMM. Both of these effects relate to our discussion in §3: as
d increases, there is likely to be less overlap between the
neighbor lists of nearby target points. Increasing the level
restriction L always helps the FMM version, except for the
smaller data sets. For these, ASKIT-FMM requires more kernel
evaluations because up to level 9 of the tree, there is no
compression. (These node-to-node interactions are equivalent
to the point-to-node interactions in the treecode).

Level restriction. We explore the effect of level restric-
tion in more detail in Table 4. In general, we see two clear



# Alg κ L m τ TE #K
Gaussian, h = 0.1, ε2 = 1e-5

18 Tree 32 4 512 1E-12 0.57 24,904
19 FMM 32 4 512 1E-12 0.27 4,869

Gaussian, h = 0.05, ε2 = 1e-3
20 Tree 32 4 512 1E-12 0.86 42,579
21 FMM 32 4 512 1E-12 0.53 11,177

Laplace, ε2 = 8E-3
22 Tree 2 10 512 1E-15 142 878,290
23 FMM 2 10 512 1E-15 39 198,003

Matern, ν = 1.2, ε2 = 8E-8
24 Tree 32 4 512 1E-12 1.99 2,445
25 FMM 32 4 512 1E-12 2.02 1,540

Polynomial, p = 2, ε2 = 1E-13
26 Tree 1 4 128 1E-12 3.05 382
27 FMM 1 4 128 1E-12 0.56 124

Table 5: Results for Uniform 3D data, N = 4E6 and
different kernel functions. The column “#” labels rows for
reference in the text, “Alg” identifies the treecode or FMM
variant, TE is the evaluation time in seconds, and #K is the
number of kernel evaluations per target. We use smax = 2048
for all the experiments. The Matern kernel experiments were
run on Stampede; the others were on Maverick. The poly-
nomial kernel experiment uses h = 1 and c = 1. For #23,
skeletonization requires 29s, list construction requires 183s,
and the LET exchange requires 4s. The Maverick experi-
ments use 20 OpenMP threads per node and the Stampede
experiments use 16.

effects as we increase L: the accuracy improves and the
number of kernel evaluations increases. Also, note that the
number of evaluations required for ASKIT-FMM increases much
more slowly than for ASKIT. As L increases, more of the nodes
in FMMFar are small. This in turn makes it more likely for
them to be successfully merged to higher levels of the tree,
thus reducing the number of kernel evaluations.

Different kernel functions. In Table 5, we show results
for the Gaussian, with two different bandwidths h. The larger
h (#20 and 21) requires fewer kernel evaluations but achieves
greater accuracy than for h = 0.05 (#18 and 18). This is
because the singular values of the off-diagonal blocks G decay
more quickly for the larger bandwidth, and our adaptive rank
skeletonization selects smaller ranks. For the Matern (#24
and 25) and polynomial (#26 and 27) kernels, we see that
we can achieve small error with very few kernel interactions.
The Laplace kernel is harder. Because of the singularity and
the fact that we do not use geometric information, the ranks
of the off-diagonal blocks are high, which results in over
20% of the direct evaluation interactions (#22). A distance-
based pruning scheme will resolve this problem. Even so, the
method will still be much slower than the classical FMM,
which exploits analytic properties of the Laplace kernel.

Application data. In Table 6, we test three large datasets.
For the selected parameters, FMM does not make as much
difference here; N needs to be much bigger since as d in-
creases, the neighbor lists overlap less. Even though the
number of kernel evaluations is smaller, the time for the eval-
uation phase is greater for the FMM than for the treecode
(see #32–37). This is because the savings from a few kernel
interactions are offset by the cost of passing the skeleton
potentials down the tree (Alg. 4).

# Alg p TE #K
SUSY, ε2 = 1E-3

28 Tree 8 9.3 65,533
29 FMM 8 8.6 56,753
30 Tree 16 4.7 65,531
31 FMM 16 4.4 56,750
32 Tree 32 3.6 65,530
33 FMM 32 3.9 56,750

HIGGS, ε2 = 9E-2
34 Tree 32 204 2,917,630
35 FMM 32 265 2,693,860

BRAIN, ε2 = 5E-2
36 Tree 32 61 124,856
37 FMM 32 85 100,233

Table 6: Experiments on real data sets with Gaussian
kernels. The column “#” labels rows for reference in the
text, “Alg” identifies the treecode or FMM variant, “p” is the
number of compute nodes, “L” is the level restriction param-
eter, TE is the evaluation time in seconds, and #K is the
number of kernel evaluations per target. The SUSY exper-
iments use κ = 1024, m = 1024, h = 0.05, smax = 2048,
τ = 0.5, and L = 5. The HIGGS experiments use κ = 1024,
m = 512, h = 1, smax = 2048, τ = 1E-7, and L = 10.
The BRAIN experiments use κ = 512, m = 512, h = 3.5,
smax = 2048, τ = 1E-5, and L = 4. The experiment in row
33 requires 4s for skeletonization, 39s for interaction list
construction, and 185s for LET exchange. All experiments
are on the Maverick system with 20 OpenMP threads per
node.

Strong scaling. We report strong scaling results for
ASKIT-FMM on the HIGGS data in Table 7. Our previous
parallel implementation of ASKIT was limited by the excessive
memory requirements for large values of κ—we only reported
results for κ = 1 in [24]. However, here we are able to scale
to 16K cores with κ = 1024. We see that the interaction
list construction and LET exchange both scale well, while
the skeletonization step does not. Note that for 16K cores,
N/(pm) = 20 while log p = 10. From our complexity bound
in (16), we expect the scaling to suffer in this regime. We also
point out that“Eval.” is the only part of the computation that
needs to be repeated for multiple right-hand sides. Although
we do not report FLOPS, they can be estimated by the
average evaluations per point as 2d(#K)10N/p/TE (ignoring
the cost of the kernel function, for example the exponential).
For example, for #37 the performance is 260 GFLOPs/node
and for #35 the performance is 180 GFLOPs/node.

Weak scaling. We report weak scaling results for ASKIT-
FMM on synthetic data in Table 8. We use the uniform 64D
distribution, Gaussian kernel, and 50K points per core. We
use the fixed rank algorithm with s = 512 to enable compar-
isons between different runs. We see that the skeletonization
phase scales linearly up to 320 cores, then increases slightly
for 640 cores. As predicted in (16), we expect linear scaling
until the log p term becomes significant. Since κ = 128, we see
slightly worse than linear scaling in the list construction and
LET exchange, since these scale as N logN . The evaluation
phase also scales slightly worse than linearly, corresponding
to a value of ζ between zero and one (20).

Kernel regression. We demonstrate ASKIT on a real-
world application—kernel regression and classification. Given



#cores 512 2,048 4,096 8,192 16,384
Skel. (Alg. 2) 1,295 465 370 305 269
Lists (Alg. 3) 729 177 87 46 23
LET (Eq. 7) 273 136 107 87 71
Eval. (Eq. 14) 157 67 42 28 23
Total 2,471 862 621 483 394
Efficiency 1.00 0.72 0.50 0.32 0.20

Table 7: Strong scaling of ASKIT-FMM on HIGGS data.
We report timings in seconds for different parts of the FMM
algorithm. “Lists” includes the time to construct, merge, and
invert the interaction lists. “Eval” includes the time to com-
pute kernel evaluations and call Alg. 4. We use κ = 1024,
m = 512, smax = 2048, τ = 1E-5, and L = 5. The experi-
ments were run on Stampede with one process per node and
16 threads per process.

#cores 20 80 320 640
Skel. (Alg. 2) 207 207 208 214
Lists (Alg. 3) 2 2 4 5
LET (Eq. 7) 13 17 31 40
Eval. (Eq. 14) 14 17 21 23
Total 235 244 263 281
Efficiency 1.00 0.97 0.90 0.84

Table 8: Weak scaling of ASKIT-FMM on Uniform, 64d
(6 intrinsic) data. There are 50K points per compute core.
We report timings in seconds for different parts of the FMM
algorithm. “Lists” includes the time to construct, merge,
and invert the interaction lists. “Eval” includes the time to
compute kernel evaluations and call Alg. 4. We use the fixed
rank algorithm with κ = 128, s = 512, and m = 512. The
experiments were run on Maverick with one MPI process per
node and 20 threads per process. In this experiment, we have
fixed the bandwidth throughout to examine the scalability of
he algorithm without changing other algorithm parameters.
In practice, we need to adjust the bandwidth as we change
the number of points.

a training set of labeled data T = {(xi, yi)} and a testing

set of unlabeled data {(x(t)
i )}, our task is to predict labels

y(t) for the x
(t)
i . Here, we assume the labels are ±1. For our

example, we use a kernel regression classifier which chooses
the label:

y(t) = sign

(∑
i

K(x(t), xi)wi

)
. (21)

The model weights wi are found by solving the linear system:

(Kh(T , T ) + λI)w = y, (22)

where Kh is a Gaussian kernel and λ is a cross-validation
parameter. We solve (22) using a Krylov iterative method.
Although K is symmetric, our approximation of it may not
be. We use the GMRES method [26] and its implementation
in PETSc [3]. Then, we compute the matrix vector product

K(x(t), x)w to classify the testing set. We use ASKIT for both
of these steps. We load the data and nearest neighbors, build
the tree, skeletonize, exchange the LET, construct interaction
lists, add the test points, and update the LET. Then in each
iteration of GMRES, we use Alg. 5 to update the skeleton
weights and compute the new potentials using (14).

Figure 4: We illustrate example classifications for our
brain data. Each data point corresponds to a single image
pixel, and the task is to identify gray matter. On the left we
have the input image, and on the right we illustrate the results.
A white pixel indicates correctly classified gray matter, gray
pixels are correctly classified background, green is a false
negative, and magenta is a false positive.

# Data Tinit TU Ttrn Ttst ε2 Acc.
38 HIGGS 578 3 27 10 3E-4 73%
39 BRAIN 495 1 16 2 3E-7 94%

Table 9: Results for our regression experiments. “#”
labels the experiment, “Data” is the regression task, Tinit is
the setup time (tree building, skeletonization, LET, interac-
tion list construction, and updating the LET for test points),
TU is the average time to update the skeleton weights per
iteration (Alg. 5), Ttrn is the average time to compute Kw
per iteration (22), Ttst is the time to compute the test po-
tentials (21), ε2 is the estimated matrix approximation error
for ASKIT, and “Acc” is the classification accuracy. We use
h = 2.0 and λ = 10−3 with 500K test points for #38 and
h = 3.5 and λ = 1 with 819,200 test points for #39. Both ex-
periments use κ = 1024, m = 512, smax = 2048, τ = 1E-7,
L = 5, and 100 GMRES iterations. These experiments were
run on Stampede using 512 nodes, with one MPI process and
16 threads per node.

In a real learning problem, one also needs to choose the
kernel bandwidth h and parameter λ. This is done by cross-
validation, which requires solving (22) for many different
partitionings of the data into training and validation sets.
ASKIT is well-suited to this case as well. New values of
h require a new skeletonization, since the kernel function
changes. However, we can evaluate the matrix-vector product
in (22) for multiple values of λ without incurring the setup
cost again. The time for this evaluation is TE reported in all
of our experiments.

We perform kernel-regression on an image segmentation
task in medical imaging [9]. Given images of human brains
from MRI tasks, we identify the portions of the image which
correspond to gray matter (see Figure 4).

Regression results. We performed experiments over
several values of h and λ and display the best classification
results in Table 9. We highlight several features in detail.
We also show illustrations from experiment #39 in Fig. 4
and the GMRES convergence history in Fig. 5. For all runs,
the time per iteration is small compared to the setup time.
The skeletonization and construction of the interaction lists



Figure 5: We illustrate the Krylov iterates over several
GMRES iterations from our experiment in #39. The images
indicate the classification result over several iterations. Ma-
genta pixels are classified as gray matter. The vertical axis
is the logarithm of the residual norm. The inset shows the
first 10 iterations in detail.

is significant, but amortized over GMRES iterations and
cross-validation for λ. This low cost per iteration is possi-
ble because ASKIT updates the skeleton weights efficiently
(Alg. 5). Despite the fact that the BRAIN set has d = 246, it
achieves better matrix approximation and classification accu-
racy with less time than for HIGGS. This is because ASKIT

scales with dintr, which is small for this set. In Figure 5 we
observe that the GMRES iterations stagnate, which suggests
the need for preconditioning.

The “ACC” label in Table 9 is the rate of points that are
correctly classified. Tinit contains the space partitioning
tree construction, skeletonization, LET, and list building
time. Ttrn is the average training time over 100 iterations of
GMRES. Ttst is the time to apply ASKIT to testing points. For
the HIGGS dataset, we cross validate over λ = 0.001, 0.01,
0.1, 1, 10 and h = 0.8, 1.0, 1.5 and 2.0. The best parameters
are h = 2.0, λ = 0.001, which gives an classification accuracy
of 73% across 500,000 testing points.

We also explore parameters for the BRAIN dataset for h =
2.5, 3.5, 4.5 and λ = 0.1, 1, 10. The testing points consist
of all pixels from 50 brain images. Figure 4 shows some
segmentation results of the grey matter from MRI brain
scans. The accuracy of brain with h = 2.0, λ = 1.0 is 94%
across all the testing points. The Jaccard index of the grey
matter is 0.60. These segmentations are not perfect due to
the existence of artifacts, noise, resolution restriction of the
MRI scans, and the fact that we did not solve the regression
problem to higher accuracy.

5. CONCLUSION
We introduced a new FMM method for the approximation

of kernel matrices in general dimensions. If the kernel func-
tion is sufficiently smooth in the far field and dintr is small,
ASKIT-FMM scales quite well with d. We outlined the main
results on the complexity and convergence of the method.
We reported results for several different kernels for problems

on up to 246 dimensions. The evaluation phase of our FMM
scheme, which is used repeatedly during cross-validation
studies, scales very well.

We have only scratched the surface of FMM methods
in general dimensions. Many theoretical and algorithmic
issues remain open. Our skeletonization uses pivoted QR
factorization, which has poor FLOP performance. Is there a
way to further accelerate it? The adjustment of the different
parameters to the dataset and to the accuracy requirements
of the client application is now done manually. Can it be
automated robustly? Combining distance-based pruning with
our neighbor-pruning will improve performance significantly
in lower dimensions. How can this be done efficiently?
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