DYNAMIC DATA-DRIVEN INVERSION FOR TERASCALE SIMULATIONS:
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VOLKAN AKCELIK , GEORGE BIRO$, ANDREI DRAGANESCUS
OMAR GHATTASY JUDITH HILL!l AND BART VAN BLOEMEN WAANDERS**

Abstract. In contrast to traditional terascale simulations that hananq, fixed data inputglynamic data-driven
(DDD) applications are characterized by unknown data afainmed by dynamic observations. DDD simulations
give rise to inverse problems of determining unknown data fsparse observations. The main difficulty is that the
optimality system is a boundary value problem in 4D spacest@men though the forward simulation is an initial
value problem. We construct special-purpose parallel nridtigigorithms that exploit the spectral structure of the
inverse operator. Experiments on problems of localizingaaite contaminant release from sparse observations in
a regional atmospheric transport model demonstrate that libmagarameter inversion can be effected at a cost of
just 18 forward simulations with high parallel efficiency. @824 Alphaserver EV68 processors, the turnaround
time is just 29 minutes. Moreover, inverse problems with 135iomlparameters — corresponding to 139 billion
total space-time unknowns — are solved in less than 5 hoursi®@same number of processors. These results
suggest that ultra-high resolution data-driven inversian be carried out sufficiently rapidly for simulation-based
“real-time” hazard assessment.

1. Introduction. Traditionally, terascale supercomputers have been eraglfyr sim-
ulations of complex physical systems that are based orcstatown data. Typically, the
behavior of the physical system is modeled by partial diffeial equations (PDEs), and the
data comprise boundary conditions, initial conditionsjrses, geometry, and material coef-
ficients. Simulations are carried out to study the behavith®system for the given data. In
this realm ofstatic data-driversimulations, absolute turn-around time is often subotdita
considerations of desired accuracy and resolution.

Recently, interest imlynamic data-drivefDDD) applications — requiring the highest
levels of supercomputing performance — has increased dieatia[9, 10]. These applica-
tions are characterized by uncertain or unknown data, amihéormed by observations or
measurements that become available dynamically. DDD sitiaunls appear in such scenarios
as hazard assessment, emergency response, treaty vienfisatuctural health monitoring,
image-driven surgery, weather forecasting, geophysiqabeation, and closed-loop process
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control, to name just a few. All of these applications shaeedhallenge of reconstructing un-
known input data from sparse, dynamically-obtained measants — and the need to issue
predictions rapidly.

In general, DDD applications can be castimgerse problemsin which the goal is to
reconstruct the missing, uncertain, unknown, or errard fi@m sparse observations and
measurements over a finite time interval. The reconstmctiast bemodel-basedthat is,
the reconstructed input data must be mapped to the obsergeadurements in a manner
that is consistent with the PDorward simulation model. Once an estimate of the input
data has been constructed, it can be used to initialize forgienulations that predict future
system behavior over an appropriate time horizon. The ‘iolesénvert—predict” cycle is then
repeated for the next time interval of observations, andso o

Rapid turn-around time is paramount for many DDD simulagiddistorically, this meant
that simulation accuracy and resolution were sacrificedfieed. Where rapid prediction and
response are mandated, the supporting simulations havi®hadert from high-resolution,
high-fidelity three-dimensional PDE models back to simgtifmodels such as lookup tables,
algebraic models, or one- or two-dimensional PDEs.

However, in recent years it has become meaningful — and iryroases imperative —
to contemplate DDD simulations of complex physical systédmsarebothrapid and highly-
resolved. This has been motivated by advances in sensingdiegies, deployment of very
high bandwidth networks, and the availability of terasclpercomputers. To capitalize on
this emerging infrastructure, a central challenge facimggutational scientists is the con-
struction of robust scalable parallel algorithms for nesat time solution of the underlying
data-driven inverse problems. Unfortunately, inverséfams are often much more difficult
to solve than corresponding forward simulations, becaussr$e problems

e usually requirmmumerougepeated forward simulations;
e are usualhyill-poseddespite the well-posedness of the forward problem; and
e are boundary value problems in four-dimensional space-tigespite the initial-
value, time-marching character of the forward problem.
Nevertheless, there is a pervasive need in many applicatiess fomear-real time, high-
fidelity, dynamic data-driven inversioThe development of scalable parallel algorithms for
this task is the goal of our paper.

Although our approach is general and widely applicable, axestthosen a specific driv-
ing application to instantiate and evaluate our algoritlamd implementation. We focus on
the localization of airborne contaminant releases in mgi@tmospheric transport models
from sparse observations [2], in time scales short enoughréalictions to be useful for haz-
ard assessment, mitigation, and evacuation procedureartisular, our goal is model-based
rapid reconstruction — via solution of a large-scale inggmoblem — of the unknown initial
concentration of the airborne contaminant in a convedtifiusion transport model, from
limited-time spatially-discrete measurements of the aonhant concentration, and from a
velocity field as predicted, for example, by a mesoscopictieramodel. Mathematically,
transport of the contaminant is described by the convedifinsion equation

g—?—uAu—i—'u-Vu:O in Qx(0,7),
vWu-n=0 on I x(0,T), (1.1)

u=uwy in Qx{t=0},
whereu(x, t) is the contaminant concentration field,(x) is the initial concentration that,

together with the velocity fielé(x, t), drives the system, andis the diffusion coefficient.
We seek to reconstruct the initial concentratigrfrom measurements of the concentration
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over a short time horizon, taken at a small number of sensatitins throughout the domain.
Then — using the just-reconstructed initial concentratierwe can issue predictions of the
longer-time transport of the contaminant plume throughloategion.

Inverse problems for convective-diffusive transport aé ttype arise in several settings:
characterization of pollutants in the atmosphere, untidaal catastrophic accidents involv-
ing (for example) chemical plants, or intentional releasfdsazardous chemical or biological
agents. Although studies have been conducted of the satysif chemical concentration
with respect to source terms or observer placement, [8,8,6,9], very little work has been
done on reconstruction of initial concentrations via dolubf an inverse problem.

In Section 2 we formulate the inverse problem as an outpst lsguares optimization
problem with a convection-diffusion PDE constraint. Fiostler optimality conditions pro-
duce a coupled system of partial differential-algebraigatipns, which includes the initial
value convection-diffusion PDE, thierminal-valueadjoint convection-diffusion PDE, and
an algebraic equation for the initial concentration. As timered above, this system is an
ill-posed boundary value problem in 4D space-time, andcglpproblem sizes of interest
present a significant challenge for rapid solution. To owvere the four-dimensionality of
this system, we invoke a block elimination that reduces tlgtesn to one in just the (3D)
spatially-discretized initial concentration variablg Unfortunately, the operator for this re-
duced system is non-local and cannot even be formed for titdgns we target, even with
petascale computing resources. Fortunately, the actidheofeduced operator on a vector
can be formed by solving a pair of forward/adjoint convettéiffusion PDEs, and the spec-
tral character of the reduced operator (as for many invexs@gms) guarantees that a Krylov
method applied to this system converges in a mesh-independmber of iterations.

However, a constant number of iterations independent ohreze is by itself not suf-
ficient for real-time dynamic data-driven applicatiotise constant itself must be reducsal
that no more than a few iterations — and hence forward/atdgiinulations — are needed to
solve the inverse problem. This requires a scalable andtefepreconditioner, which is par-
ticularly challenging because the inverse operator ismiewvened. In Section 3 we present a
parallel multigrid preconditioner designed to reduce thmher of Krylov iterations for DDD
inverse problems. Unlike PDE operators, inverse opera@sompact, and their spectral
properties are different from those of differential operat As a result, standard multigrid
smoothers are not applicable for inverse operators. Idstggecial-purpose smoothers that
are tailored to their spectral properties must be emploged these are presented in Section
3. Section 4 provides a prototype inversion scenario: ipatibn of the release of a contam-
inant in the Los Angeles harbor from short-term measuresnehits transport by onshore
winds, followed by longer-term prediction of the transpafrthe contaminant throughout the
Greater LA Basin. We also provide results on the performamzkescalability of our inver-
sion algorithm. Our results demonstrate that due to highllghand algorithmic efficiency,
inverse problems with 17 million initial concentration umdwns, and 8.7 billion total space-
time unknowns, can be solved in less than 30 minutes on 1@®&gsors of an Alphaserver
EV68-based system. The time taken is just 18 times thatsoigleforward transport simu-
lation. Moreover, inverse problems with 135 million inlt@ncentration parameters — and
139 billion total space-time unknowns — are solved in lessith hours on the same number
of processors.

Ultimately, our results demonstrate that — with carefutation to the design of scal-
able parallel algorithms — high-resolution inverse trarsproblems can be solved in “real
time,” i.e. in time scales feasible for simulation-baseddrd assessment and response. More
generally, for DDD inverse problems characterized by ott@sses of forward simulations,
the turn-around time will, of course, depend on the compleaf the forward simulation.
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However,our results indicate that model-based reconstruction @binplete initial condi-
tions — which is necessary for data-driven prediction — camathieved in a small multiple
of the cost of the forward simulation, even when millions rfartain parameters must be
estimated.

2. Formulation and optimality conditions. In this section we give details on the math-
ematical formulation of the inverse problem, its discratian, and the overall strategy for its
numerical solution.

Given observations of the concentratl()zm*}N_1 at Ny Iocatlons{rj}N_1 inside a do-
main(2, we wish to estimate the initial concentratrm(lj‘(a;) that leads to the closest reproduc-
tion of the observed concentrations using the forward part$?DE. The inverse problem is
formulated as a constrained, least squares optimizatisisigm:

de ]-
E}H)lj(u’uo) lef 2 Z/ / (u—u* :c—wj)d:cdt—ﬁ—g/ﬂugdw,

subject to % —vAu+v-Vu=0 in Qx(0,7), (2.1)

vWu-n=0 on I'x(0,7),
u=1ug in Qx{t=0}

The first term in the objective functional represents a least-squares misfit of predicted
concentrations,(x;) with observed concentrations (x;) (the delta function localizes the
andu* fields to the sensor locations). The second teriff jrscaled by the constagy/2, is a
regularization term that results in a well-posed problemthk absence of the regularization
term, the problem is ill-posed, since we cannot hope to recoemponents of the initial
concentration that are much more oscillatory than dictégdhe spacing of the sensors.
Therefore, oscillatory components of lie in the null space of the inverse operator, and
— in the absence of regularization — will appear as arbitrawise in the reconstructed
initial concentration field. To address ill-posedness, m@ley L2($2) regularization, which
penalizes thd.2 norm ofu.

The constraints in the optimization problem (2.1) are jhstdontaminant transport con-
vection-diffusion equation, boundary condition, andialitondition. The transport of the
pollutant is driven by the initial conditions, the diffusiopand the velocity field. In practice,
the velocity field would be provided by a regional numericalather prediction model such
as MM5 [20]. For our present purposes, however, we are istieddén assessing the real-time
viability and algorithmic and parallel scalability of ouniersion method. For simplicity we
employ a steady laminar incompressible Navier-Stokesstb/generate wind velocity fields
over a terrain of interest.

The inverse problem then is to determine the initial conegion fielduy(x), and the
resulting space-time evolution of the concentratidm, t), by solving the optimization prob-
lem (2.1). First-order necessary conditions for optimyalit the so-calle&KT conditions—
may be derived by introducing a Lagrangian functional:

Ns .
Ly ug,p) 2 L s dedi D [ 2a
) Ovp) - 22 0 Q(u ’LL) ($ :BJ) €T +2 QUO €T
Jj=1

/ /( ——i—uVu Vp + pv - Vu) dwdt—&—/p(u—u@dw,
Q

in which theadjoint concentration(x, t) is used to enforce the convection-diffusion equation
and initial condition. Requiring stationarity of the Lagtaan £ with respect tg, u, andug

(2.2)
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(respectively) yields the KKT conditions, which consist of

The forward convection-diffusion problem

%quu+v~Vu:0 in Qx(0,7),
vVWu-n=0 on I x(0,7), (2.3)

u=uwuy in Qx{t=0}

The adjoint convection-diffusion problem

dp Al . .
—E—VAp—V-(pv)z—;(u—u )o(x —x;), in Qx(0,T)
(vVp+wvp)-n=0, on I'x(0,7), (2.4)

p=0 in Qx{t=T}
The initial concentration equation

ﬁuo — p|t:0 =0 in Q. (25)

Equations (2.3) are just the original forward convectidgifudion transport problem for the
contaminant field. The adjoint convection-diffusion pebl (2.4) resembles the forward
problem, but with some essential differences. First, ittsrminal value problem; that is, the
adjointp is specified at the final time= T'. Second, convection is directed backward along
the streamlines. Third, it is driven by a source term givethigynegative of the misfit between
predicted and measured concentrations at sensor locatimally, the initial concentration
equation (2.5) is in the present caseldf regularization an algebraic equation. Together,
(2.3), (2.4), and (2.5) furnish a coupled system of lineaERor (u, p, up). The principal
difficulty in solving this system is that — while the forwarddadjoint transport problems are
parabolic-hyperbolic problems — the KKT optimality systésra coupled boundary value
problem in 4D space-time.

To simplify discussion of solution approaches, we intragoperatorsA, T, B and R.
Here, A denotes the forward transport operator aitd its inverseI” extends a spatial field
at initial time into space-time3 is an observation operator that localizes space-time tatgoi
at which sensors are placefjs the regularization operator (in the present case theitggn
A* is the adjoint transport operator add * its inverse; and™ restricts a space-time field to
a spatial field at = 0. With these definitions, we can write the KKT conditions irecgtor
form:

B 0 A* u Bu*
0 BR -—-T* uy| = 0 (2.6)
A =T 0 P 0

Special-purpose Krylov solvers and parallel precondéisrcan be very effective at solving
discretized versions of optimality systems such as (216)fitimization problems constrained
by steady-staté®DEs [4, 5]. Here, however, the 4D space-time nature of (#€3ents pro-
hibitive memory requirements for large scale problems.utah of (2.6) in itsfull-space
form is essentially intractable for such problems usingent computing resources. Instead,
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we pursue aeduced-spacenethod that amounts to a block elimination combined with a
matrix-free Schur complement solver.

Eliminating the concentration and forward transport equation (third row of (2.6)) and
adjoint concentratiop and adjoint transport equation (first row of (2.6)) from thi€ Kopti-
mality system, we obtain the Schur complement system foinitial concentrationug:

Hug =g, (2.7)

where thereduced Hessiafor inverse) operatoH is defined by

H® T*A~BA'T + (R, (2.8)

and thereduced gradieny is defined by

g def T*A™*Bu*.
It is immediately clear thak/ is a symmetric and strictly positive definite operator. Thbe
optimization problem has a unique solution for non-vamigh.

Notice thatH is a non-local operator (when discretized it will be a fulltmhg and
its explicit construction is completely out of the questioRor example, for the problem
with 139 billion space-time unknowns solved in Sectiord#is of dimensionl35 x 10° by
135 x 108. Thus, storingd would require about0?? bytes of memory. Moreover, forming
H would require 135 million solutions of forward convectidiffusion transport equations;
on the 1024 processor Alpha system we used for the numesiparienents of Section 4,
this would require over 400 years of computing time. Whileliedpformation of H and its
singular value decomposition constitutes an attractive@pular approach for small-scale
inverse problems [14], alternative approaches are es$dotilarge-scale problems, and in
particular those for which near real-time response is mizda

Therefore, we opt to solve (the discretized form of) (2.1pgshe preconditioned Con-
jugate Gradient (CG) method{ is never formed explicitly; instead, we compute= Huv,
the action of the reduced Hessian on a given spatial figiid matrix-free fashion as follows.
() Setug = v and solve the forward transport equation (2.3) to obtaincitrecentration
evolutionu. (ii) Compute the misfit between measuremaeriteind predicted concentratian
at the sensor locations, and use this misfit as a source te swhadjoint transport equation
(2.4) backward in time to obtaipl;—, the adjoint at = 0. (iii) Setw = fv — p|;=¢. There-
fore, each application of the reduced Hessian requirestawnsport equation solutions, one
forward in time and one backward. Besides we need to store the entire time historywof
(if we have measurements over the entire time intei@gl’)) butonly at the sensor locations.
In contrast with full-space methods, we avoid storing thevead and adjoint concentration
time histories. Thus, memory requirements for the inversblpm (2.1) are similar to those
of the forward problem (1.1).

The overall computational cost of the (unpreconditione® @ethod is the work per
iteration — dominated by the two transport equations sohsti— multiplied by the number
of CG iterations. The latter depends on the condition nunolbéine reduced Hessian. One
can show that, for fixed, H is a compact perturbation of the identity and thus has a bedind
and hence mesh-independent, condition number [11]. Runtbre, its spectrum has a small
number of clusters; it collapses exponentially ofitdr herefore, if we use a Krylov method,
such as CG, to solve (2.7), the number of iterations for aiBpeelative residual reduction
will also be mesh-independent. This is an optimal numbeteoétions, and we have verified
it numerically (see Section 4). Thus, mesh-independentergence comes for free (but the
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constant deteriorates with). The constant also depends on the Peclet number, the lehgth
the time horizon, the complexity of the velocity field, ané topography.

However, mesh-independence of CG iterations is by itsalifsufficient for DDD prob-
lems requiring real-time inversionAlthough algorithmically optimal, the number of unpre-
conditioned CG iterations is often so large that the costobfisg the inverse problem is
equivalent to many tens to hundreds of forward transpotit&wis, which precludes the use
of high-resolution models in the real-time setting. OurIgbarefore is to reduce the ab-
solute number of iterations so that the cost is equivalert bandful of forward transport
solves. To achieve this goal, we mustluce the constant in the complexity estimatbe
immediate idea is to precondition the reduced Hessianmsystéurther decrease the number
of CG iterations and, most importantly, reduce the overalllsgiock time. One challenge
in constructing suitable preconditioners for the reduceddiain is the impossibility of ex-
plicitly forming this operator for reasons stated abover this reason — and due to their
demonstrated success as preconditioners for secondsktigtal operators [12, 17], we pur-
sue multigrid preconditioners. Details are given in thetrsexction.

3. Multigrid Preconditioner. Multigrid methods have revolutionized scientific com-
puting, especially for linear systems related to elliptid @arabolic partial differential equa-
tions. Such multigrid schemes, however, are not directpliegble to reduced Hessian op-
erators for inverse problems. For this reason, there has tement interest in developing
specific multigrid-like methods for inverse problems (faample see [11, 13, 15, 17, 21]).
The main difficulty lies in constructing a proper smoothimemator for the reduced Hessian
operatorH .

For our problem, the continuous reduced Hessian operagpeistrally equivalent to a
Fredholm integral operator of the second kind. Multigridvecs for such problems have
been very successful [12]. The overall algorithm follows gtandard multigrid hierarchy:
pre-smoothing, restriction to a coarser grid, solutiolmJgmgation back to the fine grid, cor-
rection, and post-smoothing. The key aspect is the smaqailiech must address the spec-
trum of the reduced Hessian.

Classical solvers such as Jacobi and Gauss-Seidel workagalinoothers for elliptic
PDE operators, where the large eigenvalues of the diffidlemperator correspond to high
frequency eigenvectors (see [6]). These methods rapidiyiredte oscillatory components
of the numerical error, but are notoriously slow at elimingtthe smooth components. The
multigrid method can be used to effectively eliminate th@sth error components by iterat-
ing on coarser scales.

Unlike elliptic operators, however, the continuous redlidessian is a strongly smooth-
ing, compact, and nonlocal operator (hence its discretdom¥ is represented by a dense
matrix). Its eigenvector—eigenvalue correspondenceversed, with large eigenvalues asso-
ciated with smooth eigenvectors, and small eigenvaluexaged with oscillatory eigenvec-
tors. Neither Krylov-subspace methods, nor stationanhous such as Jacobi and Gauss-
Seidel, act as smoothers fff; in fact, in addition to being expensive to apply, they acteno
as roughers, since the “high energy” (large eigenvalue)pmrants, which correspond to
smooth eigenvectors, are typically resolved first, leadsgllatory components in the error.

The smoothing properties of the continuous reduced Hesstanbined with its approx-
imation of the discrete counterpart, imply that by decnegshe mesh size, botd and the
“high energy” eigenvectors are increasingly well représdion the immediately coarser grid.
For clarity we denote byi;, the discrete reduced Hessian at resolutioff we assume that
the “coarse” spacky,, is embedded into the “fine” spadg (as is often the case with finite
element discretizations), and we denoteMy: V;, — Vs, the L2-orthogonal projection,
then the action of the reduced Hessidp on the “coarse” space is well approximated by
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H,y,. If in addition we regard the orthogonal complem@nit, = (I — P,)V}, of Vo, in'V}, as
the space of high frequency functions (this is only appr@atety true; in factil’y;, actually
has both smooth and oscillatory components [6]), then tloegtsmoothing properties of the
continuous reduced Hessian imply that

Hy ~ B(I — Py) + Hop P, (3.1)

which combined with orthogonality betweét andl — P, suggeststhe following two-level
preconditionei\;, [11, 21]:

Hy'~ My, < 571~ Py) + (Hop) ' Py - (3-2)
One can generalize this procedure recursively to obtainltgrid preconditioner. Note that
the first part of the preconditiones, "' (I — P,), acts as a smoother, since it removes high
frequency components from the residual.V}f are finite element spaces, and we invert for

the initial value given the entire final-time state, it hagfehown in [11] that foi small
enough

1—Ch?/B < (Myu,u) ((Hp)  u,u) " < 1+Ch?/B, foralluc Vi, u0, (3.3)

where(-, ) is the L2-inner productp is the convergence order of the forward methpd-(2

for piecewise linear polynomials) arfd is independent of. A similar result holds for the
multigrid preconditioner when usingl&-cycle. The statement (3.3) shows that the two-level
preconditioner becomes increasingly effective at higblrgin.

There are a number of implementation issues to consider.hétbarsest level, the
approximate inverse is replaced by an “exact” solve. Thehsze for the coarse level cannot
be chosen arbitrarily, and is a function of the regular@aparametes and the compact part
of H (see [11]). Since the reduced Hessian is not available @ttpl{even at the coarsest
scale) the exact coarse solve is performed by the CG solver.ofthogonal decomposition
(I — Py,) can be replaced by less expensive projection-like operasuch as the standard
interpolation-restriction operators from classical ngultl theory. Our preconditioner then
becomes

Hy' ~ My, = 37T — I3, 1) + 15y, Moy I (3.4)

whereIth : Vo, — Vj, is the natural interpolation operator, a_f@ : Vi, — Vo is the full-

weighting restriction operator defined By" = ¢ (IQ,,ZT with ¢ chosen so that a constant
function is restricted to itself. The operatér!(I — I}, I?") acts as a smoother, replacing
the more expensivé—1(I — P;,). Note that the smoothing operator is explicit, symmetric,
and sparse; it acts only on initial concentrations, andefioee its application has negligi-
ble computational cost compared to the pair of forwardfatlgonvective-diffusive transport
solves at each CG iteration. Since we coarsen in both terhpodaspatial dimensions at
the same rate (in our implementation the time-stepping patiad discretization methods
have the same approximation order), the cost of one redueedi&h—vector multiplication
on levell is 2* times more expensive than that at the immediately coargerile- 1. There-
fore, by using just three levels, the cost of a reduced Hessator product on the finest grid
is 256 times the cost of a similar operation at the coarsest levgluding a simplé/’-cycle

1Assume thapp = 0. If v € V, is decomposed into a smoothy € Va;, and an oscillatoryw, € Wa;, then
Hpv = Hpvs + Hybwo = Hopvs = Hop Ppv. Furthermore, we can writél;, = (1 — Ph)Hh(l — Ph) +
PyH(1— Pp)+ (1 — Py)Hp Py + P,H, Py, = P, HpPy,. Then for3 # 0, (3.1) follows easily.



REAL-TIME IDENTIFICATION OF AIRBORNE CONTAMINANTS 9

strategy at the finest level we avoid computing the finestllessidual inside the precondi-
tioner; however, we use ®/-cycle (as in King’s original algorithm) at the middle leyvét
order to make up for a possible loss of quality of the preciimuier at coarser resolution, as
would follow from (3.3). As stated before, CG is used as adliselver on the coarsest level.
We employ the full multigrid framework (i.e. grid sequengjrio compute initial guesses for
each level. In the next section, we discuss numerical esult

4. Implementation and Numerical Results. We demonstrate our dynamic data-driven
inversion framework on a hypothetical atmospheric contation event in the Greater Los
Angeles Basin (GLAB) region. Using real topographical datd synthesized velocity fields,
we conduct numerical experiments in which sparse obsengtire extracted from forward
simulations and subsequently used in the inverse problenr. irf@plementation builds on
PETSc [3] to manage parallel data structures, coordindfereint grid resolutions in our
multigrid preconditioner, interface with linear solversdadomain decomposition precondi-
tioners, and utilize a range of software services. We fistulis discretization and geometry
details and problem setup. We then briefly present numeamsailts for initial concentration
inversions in the GLAB. Finally, we provide parallel and @fighmic scalability results on
structured grids without topography.

In our actual implementation, we first discretize the optiation problem (2.1), and
then write optimality conditions (as opposed to the writihg infinite-dimensional optimal-
ity conditions (2.6) and then discretizing; in the preseagecthe two are not identical [1]).
We employ Streamline Upwind Petrov-Galerkin (SUPG) finiteneents [7] in space and
Crank-Nicolson in time. For problems with high Peclet numistabilized methods such
as SUPG are more accurate than standard Galerkin on coasbesnéle use a logically-
rectangular topography-conforming isoparametric heaedidinite element mesh on which
piecewise-trilinear basis functions are defined. Sincetank-Nicolson method is implicit,
we “invert” the time-stepping operator using a restartedRE% method, accelerated by an
additive Schwarz domain decomposition preconditioneth frmm the PETSc library.

Contaminant transport is modeled over a 360 k20 kmx 5 km in the GLAB. Land
surface elevations are obtained at 1 km spacing from the US{B8 Processes Distributed
Active Archive Center (GTOPO30 digital elevation modelJhe three-dimensional mesh is
created from the surface elevations by inserting equaligsg grid points vertically from the
surface grid to the top of the domain at 5 km.

To simulate a contamination event, an initial contamindunte with a Gaussian concen-
tration given by20 exp(—0.04|x —x.|) is centered at. =(120 km, 60 km, 0 km). The plume
is transported over the GLAB region by solving the convetetiliffusion equation (1.1) with
specified velocity field over a time horizon of 120 minutesn&e measurements are taken
every 3 minutes to develop a time history from which to invefbr this contaminant, the
diffusion coefficient is taken as = 0.05. The regularization parameter is fixeddt 0.01.
The forward and inverse problems are solved on a mesh withx3621 x 21 grid points,
representing 917,301 concentration unknowns at each tiepe Fhe time step is the same
as the sensor recording rate, i.e. 3 minutes, for a total ¢ird® steps. Therefore, there are
about74 x 10° total space-time variables in the KKT optimality systen6}2.

The velocity fieldv in the convection-diffusion equation is synthesized byisg) the
steady-state incompressible Navier-Stokes equations; V) v+ Vp—puAv =0,V-v =0,
wherep is the fluid pressure ang, i) are its density and viscosity. To simulate an onshore
wind, an inflow Dirichlet boundary condition with, = vmax (2/(5.0 — Zsurace))" " and
zero for the other components is applied to the= 0 plane, wherev,,,, is specified as

htt p: / / edcdaac. usgs. gov/ gt opo30/ demi ng. asp
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30 km/hr. Traction-free boundary conditions are appliedht outflow plane at = 360
km. Traction-free tangential and no-slip normal boundamgditions are applied to the re-
maining portions of the boundary. An SUPG-stabilized fimkement method is employed
to solve the Navier-Stokes equations using linear tetnathetements derived by subdividing
the convection-diffusion hexahedral mesh.
We sample the concentrations from the forward transportilgitions on a uniformly-

spaced array of sensors, and use them as synthetic obsesvatidrive the inverse problem.
Figure 4.1 depicts inversion results for different sensoayadensities, along with the actual

i

Target Concentration 6 X 6 x 6 Sensor Array

Concentration

.20.0

15.0

11 x 11 x 11 Sensor Array

/r\\

FiG. 4.1. Sensitivity of the inversion result to the sensor array @gnsThe target initial concentration is
shown in the upper-left corner, and inversion results usingcessively-finer sensor arrays are shown in the subse-
quent images. As the number of sensors in each directiorases, the quality of the reconstruction of the initial
concentration plume improve&?2 (Q) norm relative errors ar@.79, 0.49, and0.34 for the6 x 6 x 6, 11 x 11 x 11,
and21 x 21 x 21 sensor arrays, respectively. Inversion using2iex 21 x 21 sensor array takes 2.5 hours on 64
processors of the Alphaserver EV68 system at the Pittstuplercomputing Center. CG iterations are terminated
when the norm of the residual ¢2.7) is reduced by five orders of magnitude. Topographical elendias been
exaggerated for visualization purposes.

initial concentration (labeledargetin the figure). One of the critical issues is to determine
the number of sensors required to resolve the initial camaton. As the number of sensors
in each direction increases, the error between the actiti@l iooncentration and predicted
initial concentration is reduced. The relatiz& norm error for thel x 21 x 21 sensor array

is 34%, but as can be observed in the final image, the initiatentration is localized very
accurately. Recall that due to the non-vanishing regudéion parameter and the fixed mesh
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size, we cannot expect to recover the initial concentragiactly.

The run-time on a modest number of Alphaserver processdisig62.5 hours for the
finest sensor array. As the sensor array becomes denserttiteen of CG iterations in-
creases, causing an increase in wall-clock time. With nearimation provided by the
additional more finely-spaced sensors, one might expecickeyuinversion due to a less-
poorly-posed problem. In fact, the opposite is true: ridh&rmation provided by more the
finely-spaced sensors provides more energy to the oscillatonponents of the residual; the
CG solver thus must work harder to recover these solutiorpooents. (Note that in this set
of experiments we have not used the multigrid preconditiprie addition to the influence
of the number of sensors, we have also studied the sensitivihe inversion to the regular-
ization parametef, the Peclet number, and the added noise level in the measaotentor
brevity we defer presenting these results to a separatdearti

What is of ultimate interest is how successful the reconstdumitial field is in predict-
ing the actual transport of the contaminant. Figure 4.2 aregpthe actual evolution (left)
and predicted evolution (right) of the contaminant plumgrire. It is evident from this figure
that although the reconstructed concentration does nafntla¢ actual concentration exactly
att = 0, the difference between the two diminishes over time, dubeaissipative nature
of the forward convection-diffusion problem.

We next study the parallel and algorithmic scalability af thultigrid preconditioner. In
all experiments, we use a regular grid with a constant umidional velocity field. This is
an important simplification of the problem. Further tests mecessary for the case of more
complex and time-dependent velocity fields. The corresiponBeclet number is 3. We take
synthetic measurements oif & 7 x 7 sensor array. CG is terminated when the residual of
(2.7) has been reduced by six orders of magnitude.

Table 4.1 presents fixed-size scalability results. Therseproblem is solved on27 x

TABLE 4.1

Fixed size scalability of unpreconditioned and multigrid preconditioned inversion. Here the problem size
IS 257 x 257 x 257 x 257 for all cases. We use a three-level version of the multigretpnditioner described in
Section 3. The variables are distributed across the prarsss space, whereas they are stored sequentially in time
(as in a multicomponent PDE). Heteursis the wall-clock time, ang} is the parallel efficiency inferred from the
runtime. The unpreconditioned code scales extremely weleghere is little overhead associated with its single-
grid simulations. The multigrid preconditioner also scateasonably well, but its performance deteriorates since
the problem granularity at the coarser levels is signifiégméduced. Nevertheless, wall-clock time is significantly
reduced over the unpreconditioned case.

CPUs | no preconditionenn  multigrid
hours n hours 7
128 | 5.65 1.00 222 1.00
512 | 1.41 1.00 0.76 0.73
1024 | 0.74 0.95 0.48 0.58

257 x 257 x 257 grid, i.e. there ard7 x 106 inversion parameters in (2.7) add3 x 10°
total space-time unknowns in (2.6). Note that while the GfBalions are insensitive to the
number of processors, the forward and adjoint transpoutlsitions at each iteration rely on a
single-level Schwarz domain decomposition preconditiorwbose effectiveness deteriorates
with increasing number of processors. Thus, the efficienméported in the table reflect
parallel as well as (forward) algorithmic scalability. Timeltigrid preconditioner incurs non-
negligible overhead as the number of processors increasdiséd problem size, since the
coarse subproblems are solved on ever larger numbers adgzois. For example, on 1024
processors, thé5 x 65 x 65 coarse grid solve has just 270 grid points per processoghwhi
is far too few for a favorable computation-to-communicatiatio.
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Target Concentration Predicted Concentration
Time = 0 min

Target Concentration Predicted Concentration
Time = 60 min Time = 60 min

Target Concentration Predicted Concentration
Time = 180 min Time = 180 min

Target Concentration Predicted Concentration
Time = 300 min Time = 300 min

FiG. 4.2. lllustration of the predictive capabilities of our inveesi algorithm, using arl1 x 11 x 11 sensor
array. Forward transport of the actual initial concentrafi is compared with forward transport of the reconstructed
initial concentration plume. The trajectories are closesich other, and the comparison improves with time.
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On the other hand, the unpreconditioned CG iterations éxéxaellent parallel scala-
bility since the forward and adjoint problems are solvedust fhe fine grids. Nevertheless,
the multigrid preconditioner achieves a net speedup in-atattk time, varying from a factor
of 2.5 for 128 processors to 1.5 for 1024 processors. Mostitapt, the inverse problem is
solved in less than 29 minutes on 1024 processors. This ig 48dimes the wall-clock time
for solving a single forward transport problem.

Table 4.2 presents isogranular scalability results. Heeeproblem size ranges from

TABLE 4.2
Isogranular scalability of unpreconditioned and multigrid preconditioned inversion. The spatial problem
size per processor is fixed (stride of 8). Ideal speedup sh@glult in doubling of wall-clock time. The multigrid
preconditioner scales very well due to improving algoritbrfficiency (decreasing CG iterations) with increasing
problem size. Unpreconditioned CG is not able to solve trgekst problem in reasonable time.

grid size problem size CPUs | no preconditioner multigrid
Ug (u, p,ug) hours iterations hours iterations

1294 2.15E+6 5.56E+8| 16 2.13 23 1.05 8

2574 1.70E+7 8.75E+9| 128 | 5.65 23 2.22 6

5134 1.35E+8 1.39E+11 1024 | — — 4.89 5

5.56 x 108 t0 1.39 x 10!! total space-time unknowns, while the number of processmgas
from 16 to 1024. Because we refine in time as well as in spackbacause the number of
processors increases by a factor of 8 with each refinemeteoditid, the total number of
space-time unknowns is not constant from row to row of théetah fact it doubles. How-
ever, the number of grid points per processor does remaistaot) and this is the number
that dictates the computation to communication ratio. Eeal overall (i.e. algorithmic +
parallel) scalability, we would thus expect wall-clock &ro double with each refinement of
the grid. Unpreconditioned CG becomes too expensive foatiger problems, and is unable
to solve the largest problem in reasonable time. The midtigreconditioned solver, on the
other hand, exhibits very good overall scalability, witrecall efficiency dropping to 95%
on 128 processors and 86% on 1024 processors, compared 16 fh@cessor base case.
From the fixed-size scalability studies in Table 4.1, we ktloat the parallel efficiency of the
multigrid preconditioner drops on large numbers of prooesdue to the need to solve coarse
problems. However, the isogranular scalability result$aifle 4.2 indicate substantially bet-
ter multigrid performance. What accounts for this? First, ¢bnstant number of grid points
per processor keeps the processors relatively well-ptgalif@r the coarse problems. Sec-
ond, the algorithmic efficacy of the multigrid precondit@rmproves with decreasing mesh
size (as predicted by (3.3)); the number of iterations dfops 8 to 5 over two successive
doublings of mesh resolution. The largest problem exh#bitactor of 4.6 reduction in CG
iterations relative to the unpreconditioned case (5 vs. ZB)s improvement in algorithmic
efficiency helps keep the overall efficiency high.

5. Conclusions. We have presented a methodology for solving terascale dgrdata-
driven inverse problems of determining unknown initial dion data from sparse observa-
tions in a model-consistent manner. The methodology has lmstantiated in the context
of inverse convection-diffusion transport problems. Thendifficulty is that the optimality
system is a boundary value problem in 4D space-time, evamgththe forward simulation
problem is an initial value parabolic-hyperbolic probléWe have presented special-purpose
parallel multigrid algorithms that exploit the spectralsture of the inverse operator. Exper-
iments on problems of localizing airborne contaminantaséefrom sparse observations in a
regional atmospheric transport model demonstrate that:
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¢ 17-million-parameter inversion can be effected at a cogsif18 forward simula-
tions;

e wall-clock time on 1024 Alphaserver EV68 processors forkamillion parameter
inversion case is just 29 minutes;

¢ the multigrid preconditioner reduces the number of iteraiby as much as a factor
of 4.6; and

e inverse problems with 135 million initial condition parataes and 139 billion total
space-time unknowns are solved in less than 5 hours on 1@ggsors at 86%
overall (parallel + algorithmic) efficiency.

These results suggest that ultra-high resolution dataedliinversion for linear transport
problems can be carried out sufficiently rapidly to enablegation-based “real-time” hazard
assessment. The next step is to assess scalability, parioenand real-time viability using
complex wind velocity fields. Our long-term goal is to incorate more sophisticated trans-
port models into our current framework, including, for exde) deposition, regional weather
models, and more accurate terrain information.
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