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Cross-streamline migration of deformable entities is essential in many problems such as industrial

particulate flows, DNA sorting, and blood rheology. Using two-dimensional numerical experiments, we

have discovered that vesicles suspended in a flow with curved flow lines migrate towards regions of high

flowline curvature, which are regions of high shear rates. The migration velocity of a vesicle is found to be

a universal function of the normal stress difference and the flow curvature. This finding quantitatively

demonstrates a direct coupling between a microscopic quantity (migration) and a macroscopic one

(normal stress difference). Furthermore, simulations with multiple vesicles revealed a self-organization,

which corresponds to segregation, in a rim closer to the inner cylinder, resulting from a subtle interaction

among vesicles. Such segregation effects could have a significant impact on the rheology of vesicle flows.
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Introduction.—Complex fluids are generally made of
rigid or soft particles that are suspended in a Newtonian
fluid. Examples of complex fluids include emulsions, poly-
mer solutions, particulate suspensions (many food prod-
ucts belong to this category), and blood. One of the major
challenges in understanding the physics of complex fluids
is the link between the local microstructure (i.e., spatio-
temporal organization of suspended entities) and the mac-
roscopic rheology. Microstructures spontaneously arise in
many complex fluids, and may have a dramatic impact on
flow properties [1].

A phenomenon that may induce inhomogeneous orga-
nization of the suspended entities is lateral or cross-
streamline migration. Recall that a single rigid spherical
particle immersed in a Newtonian fluid at vanishing
Reynolds number Re cannot migrate in the direction trans-
verse to the flow lines [2]. On the contrary, deformable
particles have the ability to migrate cross-streamline, even
at Re ¼ 0—if a certain symmetry is broken, for example,
the centrosymmetry in linear shear flow. Symmetries may
be broken due to the presence of walls, gradient in shear
rate (e.g., Poiseuille flow), or the presence of flowline
curvature (e.g., cylindrical Couette flow).

Cross-streamline migration appears in many applica-
tions, such as industrial polymer processing [3], DNA
sorting [4], drop dynamics [5], and biofluids. A prominent
example of the latter system is blood flow in which cross-
streamline migration of erythrocytes may result in de-
creased blood viscosity, reducing blood flow resistance in
microvasculature (Fåhræus-Lindqvist effect).

A common belief is that deformable particles have the
tendency to migrate towards regions of low shear rates
[6–10]. In some circumstances, however, the opposite is
predicted (the case of drops in a certain range of viscosity

contrast between the internal an external fluids [5]). In this
Letter, we propose an explanation for these differences and
provide quantitative evidence for the case of vesicle flows.
Our discussion will allow us to conjecture general prin-
ciples that can be used to predict lateral migration.
The study of multiple vesicles reveals a self-organization
in a rim.
We carried out simulations in a Taylor-Couette cell by

taking vesicles as a model system for the suspended enti-
ties. Vesicles are liquid drops delimited by a lipid bilayer
[11–13]; they constitute a simple model for the description
of some features of red blood cell dynamics. We have
chosen to simulate the Taylor-Couette system because it
is widely used for studying the rheology of complex fluids.
Methods.—The numerical simulations are carried out in

two dimensions using a boundary integral formulation. For
simplicity, here we state the free-space formulation (the
formulation for confined flows can be found in [14]):
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2
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I
$
vðxÞ &Tðx!x0Þ &nðxÞdsðxÞ; (1)

where $ is the vesicle membrane, v the membrane velocity,
G and T the Green’s functions of the Stokes flow, x0 and x
are points on the vesicle membrane, f is the membrane
force, n the outward normal to the membrane, #0 the
viscosity of the suspending fluid, and ! ¼ #1=#0 the
viscosity contrast between the internal and the external
fluids. The membrane force has contributions from bend-
ing energy and local inextensibility [15,16]:
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where % is the bending modulus, c the membrane curva-
ture, & a local Lagrange multiplier enforcing membrane
inextensibility, and t the normalized tangent to the mem-
brane. For the single-vesicle free-space case, we used two
implementations; the first one is detailed in [17]; the
second one, which was also used for multiple vesicles
and confined flows, is detailed in [14]. Both implementa-
tions give the same dynamics. To indicate the accuracy of
the simulations let us mention that the vesicle surface is
conserved within a relative error of 10!6 and local contour
length within 10!3.

Thenormal stress difference is defined asN ¼ 'xx ! 'yy,
where ! is the stress tensor of the suspension, computed
using [18,19]:

N ¼ 1

A#0 _$

!I
$
ðxfx ! yfyÞdsþ 2#0ð!! 1Þ

'
I
$
ðnxvx ! nyvyÞds

"
: (3)

The x, y coordinate system is relative to the instantaneous
vesicle position6 and is defined in Fig. 2. The coordinate axes
correspond to circumferential and radial directions (e(,!er)
and the origin is at thevesicle’s center ofmass.A is thevesicle
area and _$ ¼ !2a=r2 the imposed shear rate. Notice that it
depends on the radial position of the vesicle.

Description of the numerical experiments.—First, we
consider a single two-dimensional vesicle immersed in a
Newtonian fluid with a velocity field v( ¼ a=r, vr ¼ 0
(for a Couette flow, v( ¼ a=rþ br). This is an unbounded
flow. This choice is made in order to exclude any migration
due to bounding walls, allowing us to identify the role of
curvature in the flow lines. Boundaries are introduced in a
second step. Vesicles are initialized at a distance of 10r0
from the origin, where r0 ¼

ffiffiffiffiffiffiffiffiffiffi
A="

p
. The length unit is

chosen to be r0 in our simulations. The dimensionless
numbers that enter the problem are [20] the reduced vesicle

area) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=½"ðp=2"Þ)2

p
, the viscosity contrast !, and the

capillary number Ca ¼ #0 _$r
3
0=%. In the simulations

both ) and ! are varied. The value of Ca depends on the
radial position (varying from Ca ¼ 0:2 for r=r0 ¼ 10 to
Ca * 2:2 for r=r0 ¼ 3), while a is fixed to a value
a ¼ !10 (a weak dependence of vesicle dynamics on
this parameter [17] is observed). We have performed three
sets of simulations for different ) 2 f0:7; 0:8; 0:9g. For
every set the range ! 2 ½1; 10) is explored, a range that
covers both tank-treading and tumbling regimes
[11,17,21].

Results.—Typical simulation results are shown in Fig. 1.
Tank-treading vesicles migrate towards the center, while
tumbling ones show a negligibly small outward migration.
We have found that the migration rate depends on the

reduced area and viscosity contrast in a nontrivial way.
In Fig. 3, we report the migration velocity vmig for different
vesicles at fixed initial radial position r ¼ 10r0. Analogous
results are obtained for any radial position 3 + r=r0 + 10.
In the left panel, the migration velocity is shown as a
function of the two independent dimensionless parameters
explored in our simulations, namely, (), !).
The data do not seem to show a simple trend. For

example, the lines in Fig. 3(a) for migration velocities
obtained for different vesicles intersect at some viscosity
contrast. This points to the absence of a simple law in this
parameter space. We have thus attempted to rationalize
these results by evoking basic physical facts that distin-
guish a simple fluid from a complex one. A particular

imposed flow line

membrane forcex

y

FIG. 2 (color online). Force distribution on vesicle membrane
from Eq. (2) and local coordinate system used for the calculation
of N () ¼ 0:7, ! ¼ 1).

(a) (b)

FIG. 1 (color online). Trajectory and contour of (a) tank-
treading vesicle () ¼ 0:7, ! ¼ 1) migrating towards high shear
regions and (b) tumbling vesicle () ¼ 0:7, ! ¼ 4) showing no
significant radial migration (after 13 revolutions and 8 tumbling
periods).
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property of complex fluids is the manifestation of
normal stress difference. We have thus represented the
data [Fig. 3(b)], in terms of the normal stress difference
N measured in the (x, y) coordinate system (see Fig. 2 for
notations). Interestingly enough, we observe that the data
closely collapse on a single master curve, showing that the
dynamics does not depend on the control parameters (), !)
independently, but rather on their combination embedded
in the function Nð); !Þ. Moreover, Fig. 3(b) shows that
vmig=r0 _$ is simply proportional to N. This result holds for
all the radial positions explored so far, 3 + r=r0 + 10: data
collapse is manifested within an error of 10% (or less), and
the results are represented with a universal straight line
passing through the origin. The small discrepancies are
believed to be due to the details of the flow around vesicles
with different shapes and orientations.

To gain further insight we have examined the migration
velocity as a function of the curvature of the flow.
Figure 4(a) shows vmig=Nr0 _$ as a function of the radial
position. This dependence on r is nonlinear. Expressing the
results with the help of an appropriate rescaling [Fig. 4(b)]
reveals that vmig=N _$ is a simple linear function of
* , 1=ðr=r0 ! 1Þ. Note that, approximately, * is the flow
curvature on the innermost part of the vesicle, which is also
the highest among the flow lines passing through the vesicle.

This is considered to be due to membrane incompressibility,
that propagates stresses along the surface of the vesicle.
From the above analysis, we infer the following scaling
relation for migration:

vmig - r0 _$*N: (4)

This is a key result: a macroscopic measure of N (which
may be a very complex function of various parameters)
directly leads to the determination of the (microscopic)
migration velocity. One might ask why should migration
be dictated by normal stress difference at all. To answer this
question, one may consider the composite fluid and denote
its spatial and temporal averaged stress by! [very much like
the definition of the classical stress, as used in Eq. (3)]. Let
us assume stationary, circular motion, enjoying symmetry
with respect to the angle (. Using momentum conservation
in polar coordinates one can show that [22]:

@'rr

@r
¼ 1

r
½!+v2

( þ N); (5)

where + is the fluid density, N ¼ '(( ! 'rr, 1=r the flow-
line curvature, and !+v2

(=r is the inertia term, which is
absent in our case. If N ! 0, a radial stress gradient takes
place, resulting in an inward force pushing the fluid towards
the center if N > 0. No such simple result holds in flows
which do not exhibit flowline curvature. This result shows
that both N and the flow curvature cause inward motion, in
accord with Eq. (4). We have performed simulations in a
parallel flow having the same velocity profile as the irrota-
tional vortex, that is vxðyÞ ¼ 1=y [in Cartesian coordinates
(x, y)]. Contrary to the Couette flow, in parallel flow vesicles
migrate toward regions of low shear rate despite the fact that
N > 0. This points to the conclusion that inward migration
in the Couette setup is due to the curvature of the flow lines
rather than to a shear gradient.
Tank-treading vesicles show positive normal stresses

and they migrate inwards. In the tumbling regime, we
have found N ’ 0 (averaged over a tumbling period), and
a negligibly small migration. Moreover, N vanishes for
tank-treading vesicles when approaching the transition to
tumbling or when the shape is close to a sphere [17,23].
This is consistent with the fact that vmig ! 0 with increas-
ing ! or ) (Fig. 3).
Having identified the basic phenomena for migration of

a single vesicle, we are now in a position to address the
question of the impact of this feature on the organization of
a collection of vesicles. Here we address the case of a
sufficiently dilute suspension. In these simulations we
have included confining boundary conditions [14,24], in
order to address a realistic situation. Starting from various
initial configurations (including a disordered one) we have
found that the mutual interactions between vesicles lead to
a nontrivial spatial organization. We present the results
for a volume concentration , * 2% in Fig. 5 (we have
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FIG. 4 (color online). Inward migration velocities divided by
Nr0 _$ as a function of (a) r and (b) 1=ðr! r0Þ for different ).
Every point corresponds to the (!, N) pair on the abscissas.
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FIG. 3 (color online). Inward migration velocity normalized
by r0 _$ as a function of (a) ! and (b) N for different ) at fixed
radial position r ¼ 10r0. Every point corresponds to the (!, N)
pair on the abscissas.
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performed simulations with concentrations between 1% &
, & 6%, leading to the same conclusion). After a transient
the vesicles exhibit a spatial order: they organize them-
selves in a rim by keeping the same interdistance. The rim
radius is (within numerical uncertainties) very close to the
final position of a single vesicle (Fig. 5). A single vesicle
stops when the inward migration compensates the lift force
due to the inner cylinder. The organization in a rim which
has the same radius as that dictated by the final position of
a single vesicle is not obvious: indeed, the fact that the
vesicles select the same interdistance is a clear indication
for their significant mutual interactions, and despite this
effect the terminal position does not seem to be affected.

For a better understanding, we have analyzed the behav-
ior of the flow lines. A single vesicle creates two vortices as
shown in Fig. 5(a). The size of the vortices is of about a
quarter of the circumference. We thus expect vesicles to
interact significantly when their number M approaches 4.
This is confirmed by our simulations that show disorder for
M< 4 and order for M . 4. For M . 4 vesicles keep
order because deviations would cause restoring forces
due to vortex interactions. For all explored volume frac-
tions we found persistence of order as shown in Fig. 5(b).

Finally, in view of the generality of the arguments
presented for migration, it is natural to attempt to extend
them to other types of complex fluids. For example, ex-
perimental measurements of migration are known for soft
entities in Taylor-Couette and cone-plate rheometers:
drops [5,25,26] and polymers in dilute suspensions
[27,28] either migrate towards the center (cone plate) or
adopt an equilibrium position that lies between the gap
center line and the inner cylinder (Taylor-Couette), which
corresponds to high shear rate regions. Because drops,
polymers, and vesicles have quite different properties, their
similar behavior with respect to migration supports our
conjecture that the basic mechanisms governing migration
are independent of the mechanical details of the suspended
entity and depend only on the flow curvature and N. An
interesting line of research would be to study the evolution

of order for higher concentrations, and provide a detailed
link between microstructure and rheology.
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FIG. 5 (color online). Equilibrium configurations in a Taylor-
Couette device for (a) a single vesicle and (b) several vesicles
(volume fraction * 2%). The lines represent the induced flow.
Spontaneous organization in (b) is due to inward migration and
vortex interaction.
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