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Abstract. In this work several aspects of the computer modeling of anatomical structures are considered. A short review of the
current status in the topic of surface reconstruction is presented. The goal of this study is to use CT-scan data in order to construct a
finite element model and then perform analysis of the mechanics of the total hip replacement procedure. Imaging software is used
to extract the contours of the object. Two methods are tested for surface reconstruction; triangulation and B-splines. Public domain
software ( INRIA' nuages) is used to obtain triangulated C° surfaces and then commercial software to complete the analysis.
Meshing and Boolean operations with triangulated surfaces failed in many cases so the B-splines approach was persued. Known
algorithms for curve smoothing and C? surface reconstruction were implemented in C programming language. For each contour
a B-Spline representation of the original data set is created and then a knot removal algorithm is applied to smooth the curves and
reduce the number of control points. A tensor product B-Spline surface is created based on the smoothed curve set. Output of the
curves and surfaces is in IGES? format. These files were pipelined to mesh generation using PATRAN P3/MSC? and ANSYS 5.2*
for the femur and the acetabulum.

Keywords. free-form surfaces, surface reconstruction, medical imaging, meshing, finite elements, biomechanics, B-Splines,
NURBS, solid modeling, curve smoothing, contours, CT-Scan

1 Introduction

1.1 Biomechanics

The medical community has reached a point where a precise, patient specific, simulation of surgical pro-
cedures is highly in demand. The motivation for this work is the need for quantitative analysis of both
anatomical structures and their interaction with medical devices.

The scope of biomechanics is to quantify and clarify tissue/tissue and tissue/device mechanical inter-
actions. The complexity of the human body is such that analytical methods fail to answer these questions.
They are good for providing qualitative information and insight into the problems under consideration. Two
are the main paths; experimental and computer aided numerical investigation. Experimental methods have
several drawbacks such as:

e Usually only surface information can be obtained and very often the area of interest lies inside the
body.

e Calibration of measuring devices is difficult. Often measurements are performed on soft tissue and it
is hard to specify a zero strain setting.

e Itis difficult to obtain specimens and even more difficult to perform the experiments in vivo.

Nevertheless experimental methods are very important. The constitutive equations of living tissues are still
unknown although much progress has been done. Using experiments one can explore various continuum
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models and come up with one which matches the tissue’s response. Experimental methods are also essential
when trying to validate numerical results. Furthermore it is an active area of research by itself since reliable
techniques must be developed in order to measure various variables inside the body without harming the
tissues.

Numerical analysis is the only alternative when dealing with the above-mentioned problems. Having
a constitutive law, one can investigate the physics of the body in a very efficient way. Many “what if”
situations can be explored and thus theories about the function of the body can be scrutinized and invasive
techniques optimized. Our interests focus on the area of orthopaedic biomechanics. We investigate hip
replacement surgical procedures.

The analysis of the hip replacement mechanics can be divided into two parts. The first is the behavior
of the pelvis when inserting the acetabular cup. The second is the insertion of the femoral implant in the
intramedullary canal of the femur.

An crucial issue in total hip arthoplasty is reduction or elimination of the need for a revision surgery.
This kind of operation is commonly required 10 to 15 years after the initial hip replacement, usually due to
bone-implant bond loosening. The etiology for bone loosening is usually biocompatibility, stress shielding,
initial instabilities and inadequate bone ingrowth. In order to optimize the parameters of the surgery based
on the particular needs, a patient specific analysis is necessary. This analysis will lead to optimal implant
size and positioning.

1.2 Finite Elements

Because of the complex interactions of many mechanical and geometric variables at the bone-prosthesis
interface, finite element analysis (FEA) must be used in order to simulate the insertion of the implant. This
simulation becomes important in the case of cementless procedures. Prior to bony ingrowth, the cementless
femoral component must rely on its contact with the cortical endosteum to achieve stability. Finite elements
can be used to optimize the size and orientation of the implant and minimize the initial instability and time

[4]

FEA of the hip is a very difficult problem. It is almost impossible to take all the real parameters into
consideration since the problem will become impossible to solve. Here are some aspects one has to consider:

Material properties.

e Nonlinearity.

1. Tissue admits finite deformations.
2. Trabecular bone plastifies.
3. Bone adaptivity and remodeling must be taken into account.

e Trabecular bone is orthotropic.
e Inhomogeneity
1. Upper femur consists mainly of cancellous bone.



Stage 1

OSTEOARTHRITIS
OF THE HIP

Stage 2

Stage 1: Deterioration of cartilage begins
Stage 2: Grinding of bones and deformation of joint begins
Stage 3: Joint suffers excessive damage.

Figure 1: Osteoathritis of the hip is one of the main pathologies that create the need for total hip replacement.
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Figure 2: X-Ray of an implanted THR prosthesis. The femur head has been replaced by a metallic prosthesis. An acetabular
component is also implanted in order to replicate the joint functionality.
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Figure 3: Main parts of a total hip replacement prosthesis. Acetabular cup and femoral stem.



2. Femur outer layer is cortical bone.

Geometry. Complex 3-D objects which are difficult to describe mathematically and even more difficult to
mesh.

Interface and boundary conditions.

e Final contact area and displacements on this region have to be computed.
e Complicated-difficult to determine muscle forces.

1.3 Solid Modeling

In order to perform numerical analysis of an object, one must have its geometric description. The complexity
of the human bones makes their mathematical description extremely difficult. Great amount of work has
taken place in the previous years, mainly in the area of medical imaging.

The common procedure is the following: One takes MRI or CT-scan data representing cross sectional
images of the human body. The extraction of the geometry of the structures under consideration takes place
using image processing techniques. The output of these programs is a set of points describing the object in
3-D space as a set of planar contours.

After this step a further processing of data has to take place in order to reconstruct the boundary of the
object. Various methods have been developed, each one having its drawbacks. The main concerns are the
required mathematical smoothness of the surface, whether or not further manipulation of the object will take
place but the most important issue is whether the reconstruction is done for imaging or numerical analysis
purposes.

1.4 Analysisof The Hip Replacement

We investigate press fit Total Hip Arthoplasty (THA). The ultimate focus is 3-D patient specific finite ele-
ment analysis of the femoral part insertion into the intramedullary canal. We begin with CT-scan data of the
femur and we have to reconstruct the femur as a solid. Then we have to perform Boolean operations in order
to create the hole where the femoral implant will be inserted, and proceed with the numerical investigation
of the insertion. A similar analysis will be done for the acetabular cup modeling, on the pelvis.

2 Surface Reconstruction

2.1 General Considerations

There are three well-established paradigms for representing solids that are based on the boundary of the
object, spatial subdivision and construction from primitives using Boolean operations [5].
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The boundary of a solid consists of vertices, edges and faces. For each of these entities, the geometric
part of the representation fixes the shape and/or location in space, and the topological and geometrical
information is a boundary representation (B-rep) of a solid.

Instead of representing the boundary of an object, the object can be represented explicitly by its volume.
The volume is represented as a collection of cells of a partition of space. The various data structures differ
in how they organize the cells and what information about the object each cell contains. Some widely used
data structures are hierarchical and subdivide space recursively. The simplest hierarchical data structure is
the region octree based on regular decomposition. The method partitions a cuboidal region into eight equally
sized octants. The region is represented by a node in the region octree, and the eight octants are its eight
children. Region octrees are suitable for solids with faces that are parallel to the principal axes. Solids with
inclined faces are approximated by region octrees. Thus they give only a rough description of the boundary
of the object. For further details see [6].

Conceptually similar to cell representation techniques are the voxel methods. The voxel®> method is a
volume representation via the exhaustive enumeration of the occupancy of elementary cells that lie on a
uniform 3-D grid. For each cell, a binary value indicates whether that cell is either inside or outside the
object. This is called binary voxel model method. Other voxels techniques used in MRI and CT imaging
allow more values for each cell in order to model different tissues. The accuracy of the approximation de-
pends on the subdivision level. These methods provide unambiguous representations of objects and Boolean
operations are straightforward to implement. However, other operations like geometric transformations and
displaying can be tedious and computationally expensive. Moreover, to our knowledge, a lack of interface
exists between commercial mesh generators and voxel models. There are works done on extracting bound-
ary surfaces out of a voxel model. Additionally efficient algorithms have been described for the conversion
from both polygonal surfaces and parametric surface patches, to voxel based models.

Both the boundary-based and the volume-based representations we have discussed herein are explicit
representations. An alternative description is one in which a solid is described in terms of Boolean opera-
tions on simple volumetric primitives. This is an implicit method and is called Constructive Solid Geome-
try. A CSG representation is a tree structure in which the internal nodes represent Boolean operations and
transformations®, and the leaves represent primitives.The standard primitives include the half space, simple
prismatic polyhedra, natural quadrics ( sphere, cone, cylinder) and the torus.

Finally a different method to represent a solid is the skeleton. The interior skeleton [5] of a three-
dimensional solid is the locus of the centers of all inscribed maximal spheres. A sphere is maximal if there
is no other inscribed sphere that contains it completely. This kind of shape representation was proposed by
computer vision research groups and is useful for generating 2-D finite element meshes. However, this idea
is still under development.

In general, the main parameters to consider when analyzing geometric modeling problems are:

e The source of geometric data.

e The required precision.

5 A voxel is a cube-like cell or a volume pixel.
STransformations are geometric operations that position and orient the solid represented by the subtree rotations, translations
and scaling.
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Figure 4: The main technologies for solid modeling.

e Algorithm complexity.

e Storage cost.

e Computational resources.

e Display complexity.

e Desired manipulations.

e Representation conversions.

e Linksto FEM mesh generators.

e Links to other CAD programs.

e Manufacturing and dimensional control procedures.

e Future usefulness.

2.2 A Special Case: Anatomical Structures

The problem of reconstructing a three-dimensional surface from a set of planar sections” is an important
problem. In clinical medicine, the data generated by various imaging technologies such as CT, ultrasound

A section is the set of contours formed by one slice through an area of interest. The contours in a section do not necessarily
come from the same object, and an object may be represented by more than one contour in a section. A contour is a simple polygon
representing the intersection of the surface of an object and the plane of section.
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or magnetic resonance imaging (MRI) provide a series of slices through the object of study. We review the
basic technologies on this subject.

A CSG approach is very difficult. Anatomical structures have very complex geometry which is impossi-
ble to describe with simple primitives. For example, a femur could probably be approximated by a cylinder
but we are dealing with a patient specific “exact” anatomical description. One could allow more complex
primitives, but computationally, Boolean operations are either prohibitively expensive or insufficiently ro-
bust.

Therefore voxel and surface methods are the methods which are used. Volume based approaches assume
that data are available as a three dimensional grid and a voxel representation is chosen. Surface based
approaches assume the data define the intersection of a surface and a plane of sectioning. Which method
is suitable depends on the nature of the data. When the available data is a dense three dimensional lattice
of values, as in the case of the medical imaging techniques, a Voxel method can be used [8]. Going from
voxel models to finite elements is straightforward. One can use voxels themselves as brick elements [9,
13]. However, in this case the element size is defined by the resolution of the model and when one wants
good geometric approximation, one ends up with a high number of elements. When the problem includes
nonlinearities and contact mechanics the computational requirements become very expensive.

Numerous workers have researched B-rep reconstruction of solids during the passed decade. The main
idea is to perform image processing to the data in order to extract the contours of the object. Then apply
an algorithm in order to join these contours together. The problem of generating a surface from a set of
contours can be broken into several subproblems [10].

e The Correspondence problem is solved by determining the topological adjacency relationships be-
tween the contours of the data set. A solution to the correspondence problem determines the coarse
topology of the final surface.

e The tiling problem is solved by generating the “best” topological adjacency relationships between the
points of pairs of contours from adjacent sections by constructing a triangular mesh from their points.
A commonly chosen metric for determining what is “best” is the minimization of the resulting area.

e The branching problem arises when an object is represented by a different number of contours in
adjacent sections, in which case the standard method for solving the tiling problem cannot be used
directly. A solution to the tiling and branching problems determines the topology of the surface and
its coarse geometry.

These issues have been intensively studied by various investigators. The multiple branching problem
has been the focus of research. However, the development of an efficient and automated algorithm for it
remains an open problem.

Keppel’s paper [16] seems to be the first publication on surface reconstruction from planar slices. These
surfaces are constructed solely from elementary triangular tiles, each defined between two consecutive points
on the same contour and a single point on an adjacent contour. Constructing this surface is shown to be
equivalent to finding a path in a directed graph. However the method depends on the fact that there is a
one-to-one relationship between contours. Christiansen and Sederberg [14] described a method that handles
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some branching structures but requires user intervention in complex cases. Various researchers proposed
methods based on a concatenation of contours. Boissonat [17] proposed a solution based on a Delaunay
triangulation between each pair of slices. First, the volume of the object is created and then the boundary
is extracted. This method is difficult to implement and does not take into account the topological similarity
of the contours. Nevertheless, as a general method, it produces nice results and its code is available on the
Internet ®. Note though, that the Delaunay triangulation does not pose any constraints to the quality of the
triangulation.

All these approaches result in a C° surface. From our experience these surfaces might create prob-
lems during the meshing stage. Usually triangulation algorithms are devised for visualization purposes and
therefore they do not pose any constraints on the shape of the triangles. When this kind of triangulation
is pipelined to a mesh generator it might lead to failure since the meshing algorithm respects the specified
boundary. Again researchers have worked on this field to produce smooth surfaces. Based on the Delaunay
triangulation and barycentric implicit® Bernstein-Bézier patches, Bajaj [11] has devised an algorithm for
C1 surfaces. Algorithms which take a C'° piecewise surface and produce C™ piecewise surfaces also exist.
Two different approaches include that of Jimenez [19], in which the surface is represented using trigono-
metric interpolation, and Meyling [18] who uses B-spline functions in spherical coordinates to represent
starlike'” objects. Bajaj [10] explores a technique that goes from the points to the mesh without attempting
any surface reconstruction. The algorithm creates an unstructured 3D triangular (tetrahedral) mesh of the
solid. However, if one wants to perform Boolean operations to the anatomical structure this approach is
inadequate.

2.3 A Simple Approach

The problem is how to use CT-scan data in order to describe mathematically the femur and create a com-
putational mesh based on this description. We decided to use B-rep methods. First we extract the contours
of the femur and then we pass a surface through these contours. We are using ANSYS 5.2 and PATRAN
P3/MSC as mesh generators and solvers. From the beginning, voxel methods were excluded since the afore-
mentioned packages do not offer any interface to this representation. In the first place we have used a public
domain triangulation program (nuages), which is based on the algorithm described in [17].

One issue not often mentioned in the literature was the quality of the CT-scan data. As we will see, the
procedure of extracting the boundaries of the object under consideration is still under development, and the
current practices induce error to the output data. Usually human intervention is necessary in order to process
the CT-scan, with the aid of imaging software. This procedure produces 300-1000 points per contour. For
the pelvis approximately 200 slices are used to describe its geometry. This makes a total of 200K points
to interpolate. It is apparent that any algorithm whose complexity is greater than O(n?) gets prohibitively
slow!!. The most important problem is that this complexity will propagate to all the steps of the analysis;
that is, displaying, meshing, and solving.

8Currently at: htt p: // www. i nri a. fr/ prisme/ personnel / gei ger/ nuages. ht ni

°Implicit surfaces are algebraic surfaces i.e. given in the form: f(z,y,2z) = ¢;c = const. On the other hand parametric
surfaces are given in the following form: z := z(u, v), y := y(u, v), z := z(u, v).

10A starlike solid is one that has at least one internal point such that the lines connecting this point and all the points on the
surface of the object are internal.

" For example the worst case complexity for the Delaunay triangulation in the R® is O(n?) and the worst case for incremental
Delaunay triangulation is O(n?) [17]
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A logical solution is to try to reduce the number of points describing each contour. Existing software in
the lab uses piecewise linear interpolation and smoothing of the points, as follows:

I f dist(P;, Pi—1Pit1) > Tolerance Then
Discard P;.
Where Pi, Piy1 € R2.

The new set of contours was triangulated and used as inputto ANSYS. We managed to mesh the surface
of the femur. Additionally we managed to perform Boolean operations and to create the exact geometry of
the femur before inserting the femoral part of the implant. However, the existence of nearly degenerated
triangles led the volume meshing algorithm to failure. The shortcoming of these triangulated representations
is that they limit the biggest element size the generator has to work with (Fig. 5). Moreover the whole
procedure of Boolean operations was tedious and difficult to reproduce. Since our goal is not simply to
perform one analysis, but to create a patient specific automated procedure, we decided to step back and
change the reconstruction technique.

In order to allow mesh generators more flexibility a smooth surface must be used. The dominating
mathematical tool for describing curves and surfaces are splines or more specifically Non Uniform Rational
B-Splines (NURBS). Splines are the lingua franca in the CAD software, and they are included as an entity
in IGES, STEP, DXF and other graphics exchange protocols.

Having the points of a contour, we interpolate these points using cubic splines. A knot removal algorithm
is applied in order to reduce the necessary data and smooth the contour. Then, having a stack of contours
we form a tensor product B-Spline surface. It has to be mentioned that currently we do not deal with
branching. After the processing of the contours is completed ,the selection of the contours which will be
stacked together is done by the user. In this way all the individual branches of the object are created and
output as IGES 5.2 files. We use PATRAN 3 in order to join the individual branches.

Boolean operations remain a problem since at this moment no available algorithm exists to efficiently
address this problem. Parametric patches are inherently difficult to work with. For example the intersection
of an m-degree algebraic surface with a degree-n algebraic surface is a curve of degree mn. The intersection
of two bicubic surfaces each with algebraic degree 18, could result in a space curve of degree 324.

Finally we inserted these IGES files to ANSYS and PATRAN for mesh generation and solving. We used
PATRAN for meshing and ANSYS for solving. We performed this sequence for two femurs and one pelvis.
The meshing of the pelvis is still problematic.

3 Processing CT-Scans Output

In collaboration with Shadyside Hospital we have obtained CT-scans from cadavers and patients. These CT-
scans include both the pelvis and the femur. In order to extract the contours we used the commercial imag-
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Figure 5: Surface reconstruction using triangulation and Boolean operations.
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ing package AVS'2. This package uses modules ( functions) to perform operations and is programmable.
The program to do contour extraction was developed by the MRCAS'? group of the Robotics Institute at
Carnegie Mellon University.

The thresholding technique is used to separate bone from soft tissue. In the grey scale lighter regions
indicate dense material and the dark regions softer material. Using an upper and a lower value we can create
sets of points whose grayscale color corresponds to bone. Then a seed is inserted to the regions of interest to
distinguish between different regions of bone ( pelvis and femur in our case). This seed is propagated from
slice to slice in the vertical direction'. The next step is to create a closed region and extract the boundary
of this region. Sometimes the bone quality is such that human intervention is necessary in order to complete
this task. The output of the file is the one required by the nuages code and is described in the Appendix.

4 Triangulation

Our first approach was to use existing code for surface reconstruction. The intermediate step of linear
approximation of the contours did not work that well. The resulting tessellation had almost degenerate
triangles which led to the failure of the mesh generator. However we consider this approach as an alternative
because it handles the problem of branching and is fully automated.

Our code allows the user to choose the approximation error and thus determine the number of points
which define each (piecewise linear) contour and the step between the slices. This is an implicit way to
control the size of the triangles which in turn defines an upper bound to the element size during the mesh
generation.

Furthermore, if one wants to work with a smoother surface there are ways to obtain a C'' or a C?
triangulation starting from a C° one. 1hm [12] uses algebraic quintic surfaces and Hermite interpolation. A
similar approach is followed by Menon [22] who uses trunctets to construct the surface, essentially using
algebraic surfaces. He transforms a B-rep solid to union of truncated tetrahedra which have one facet in the
form of an algebraic surface. Fong [21] and Garcia [20] use barycentric coordinates and B-Spline patches.
The basic idea is to average the normals of a set of triangles and fit polynomial surfaces. Algebraic patches
have the important advantage that they are of lower algebraic degrees so all the computations become easier
to perform. The price is reduced flexibility, but in triangulation smoothing this is not a problem.

12 Advanced Visual Systems Inc., 300 Fifth Ave., Aeltham MA 02154
3 Medical Robotics and Computer Assisted Surgery
" The coordinate system used has the zy-plane aligned with the slices.
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5 Curve Smoothing

51 Mathematical Background

Spline functions (splines) are currently used in diverse domains of numerical analysis ( interpolation, data
smoothing, geometric modeling, numerical solutions of partial differential and integral equations, etc. ).
Based on the splines, NURBS have become a standard for describing complex geometries and is imple-
mented in every kind of CAD software.

The advantages of splines and NURBS with respect their use in geometric modeling are:

e NURBS are genuine generalizations of non rational B-Splines.

e They offer a common mathematical form for representing and designing both standard analytic shapes!®
and free-form curves and surfaces.

e By manipulating the control points as well as the weights NURBS provide the flexibility required to
design complex geometries.

e Evaluation is reasonably fast and computationally stable.

e B-splines and NURBS have a geometric tool kit ( knot insertion/refinement/removal, degree elevation,
splitting, smoothing,etc. ).

e B-splines and NURBS are invariant under scaling, rotation, translation and shear as well as parallel
and perspective projection.

However they have several drawbacks such as:

e Improper application of the weights can result in very bad parameterization, which can destroy sub-
sequent surface constructions.

e Boolean operations. An example is surface/surface intersection where it is particularly difficult to
handle the “just touch” or “overlap” cases.

e Fundamental algorithms as the inverse point mapping are subject to numerical instability.

e Displaying algorithms like rendering require C° representation of objects. Thus there is an inherent
incompatibility between higher order splines and these algorithms.

So what are a spline function, B-splines and NURBS? A spline is a piecewise polynomial. It consists
of polynomial pieces on subintervals joined together with certain continuity conditions. B-spline theory is a
way of constructing a group of functions which form a basis for all possible splines up to a degree to a given
interval and a given knot vector. NURBS is a generalization of B-splines in order to provide more flexibility
and the ability to represent conics exactly.

15 conics, quadrics, surfaces of revolution etc.
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5.1.1 Splines

Definition. A function s(z) defined on a finite interval [, b], is called a spline function of degree k£ > 0 and
order(k + 1), having as knots the strictly increasing sequence z;, 7 =0,1,...,n—1 (2o = ¢, z,—1 = b),
if the following two conditions are satisfied:
1. Oneach knotinterval [z, z;41], s(z) is given by a polynomial of degree k at most.
ez, x4, s(x) € P, j=0,...,n—2. Q)
2. The function s(z) and its derivatives up to order k£ — 1 are all continuous on [a, b].

s(z) € C*a,b). )

Definition. A spline function s(z) is called periodic if in addition to (Eq. 1) - (Eq. 2) it satisfies

sW(a) =), 1=0,1,... . k—1.

Definition. A natural spline function is a spline of odd degree £ = 2/ — 1(I > 2) which satisfies the
additional constraints ' '
st (a) = )by =0, j=0,1,...,1— 2.

We now present a theorem to give an aspect of the geometric properties of the splines. The theorem is
valid for cubic splines but it can be generalized for higher (odd) degree spline functions.

Theorem. Let f” be continuous in [a,b]and leta = 29 < 21 < ... < x,_1 = b. If s is the natural cubic
spline interpolating f at the knots «; for 0 < ¢« < n then

[ < [T

a

Recall that the curvature of a curve described by the equation y = f(x) is the quantity

| (@) | [+ S (=)},
It is apparent that the natural spline produces the smoothest possible interpolating function.
The vector space of functions satisfying (1)-(2) will be denoted by S ¢ and its dimensionis» + k£ — 1

[25].

5.1.2 B-Splines

B-splines are a system of spline functions from which all other spline functions can be obtained by form-
ing linear combinations. That is, these splines provide bases for certain spline spaces. The B-splines are
distinguished by their elegant theory and their model behavior in numerical calculations.
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We begin with a knot vector of the form
t:= {t07t17"'7t]\7+k}' (3)

where £ is the spline degree.

Definition. Let £ denote the degree of the spline. Then a normalized (see Eq.8) B-spline B; ;. ¢ with knots
Liy. .. tipry1 1S defined as

S (i -0
(. . i
Bi,k,t(t) = (tl-}—k-}—l - tZ) Z Hk_H (t' 1 ) 4)
=0 lli=o \*2+3 i+l
I#5
where
(t'_|_‘—t)k L 0, . Ifti_}_]‘ <t
i = .
J + (tig; — )%, it >t
For example a cubic B-spline on the knots ¢;, . . ., ;14 IS given by :
i—1t; 1—1; 1—1t; . .
tita—ti tiyo—ti tip1—1; ti <t <tigy
t—t; t—1; tiyo—t tiya—t t—ti11 ) +
tég-s—l‘z‘t 75:‘-;2;751‘ l‘i+2;l‘z‘t+1 tiyas—tit1 tiga—Tlit1
it4— —tit1 —tit1 . .
tiva—tiy1 tigs—tit1 tipa—tiq1 biv1 S TS Liga
B: (t) _ t—1; tit3—1 tiya—t
4,3t tiya—t; tiya—tit1 tita—Tlig2
tipa—t t—=tit1 tiya—t tiya—t t—tig2 ) . .
tz‘g-/;—tz‘g-z ttz‘+3—ttz‘+1ttz‘+3—ttz‘+2 + tiva—tit2 tiga—tigo Lita S TS liga
itd4— itd— it4— : ;
tiva—tip1 tiya—tito tita—liys livs S_t S tiga
0 otherwise
Basic properties.
1. Recursion: L . .
— i i+k+1 —
Bigt(t) = ———Bigp-1,t(t) + 7—————Bit1,6-1,(1),
bivk — i Livk+1 — Liy1
Bioa(t) = 1, ifteft,t; +1] )
n0.t 0, iftd[t;t;+1].

2. Local support:
Bi,k,t (t) =0if¢ §7_f [ti, ti-}—k-l—l]-

3. Positivity:
B; ¢(t) > 0 VL.

4. Boundary values:
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5.1.3 Splines as Linear Combination of B-Splines

Given a knot vector u, (ug = a,u,_; = b) with n elements we can construct n — (k + 1) linearly
independent B-splines of degree k. However, the dimension of Sy, ,, is n+k-1 which means that in order to
produce all possible splines in [, b] we have to expand the original knot vector. Hence, we need another set
of 2k B-splines. So we create an arbitrary new knot vector t as follows:

o<t <<tk =a,
ti = uy; t=Fk...,n+k—-1; 7=0,...,n—1. (6)

b= tn—l—k—l < tn—}—k <...< tn—l—?k—l-

Thus we can construct n+k-1 B-splines B;,7 = 0,...,n+ k — 1. Let N = n + k — 1 then every spline
s(t) € Sk,u has a unique representation:

N-1
s(t) = > eiBirg(t), (7
=0
in which the ¢; are called the B-spline coefficients of s(¢). An important property of B-splines is that:
n+k—1
Z B; x(t) =1Vt € (a,b). (8)
1=0

B-splines have many other properties like convexity, affinity, rules for integration and differentiation, etc.
For more details see [23, 25, 26, 27].

Another important feature of B-spline functions is that one can use a family of discrete norms which
approximate the usual Z7-norms well, at least for moderate values of k. Recall that the 7.-norm of a function
s is defined by

lIsll s = { (fs|P)t/P, for1 < p<oo
L sup|s|, forp = oo

and similarly the ¢7-norm of a vector a € R" is defined by

Jal = { (S la)!/7, for1<p< oo

max;|a;|, forp =0
If s = b{'c where b = (Bg gt ..., Bn_144t)" the ¢7, t-norm of s is defined by
(s leilP (tigngr — )/ (k4 1))2/P, for1 < p < oo
[Isllep = o - 9)
max2|cz|7 forp o0
/P
which can be written as [|s||,, , = HEi/ch , Where Ei/p is a diagonal matrix of dimension N with
diagonal elements
. _f. 1/p
s = | (e —6) /(e 1)V, for1 <p < oo "
17 forp =0

SEach B-spline B; 1 u starts to the ith knot and extends to the (: + k + 1)th knot.
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The use of these norms is justified by the following inequality [23] , which denotes the equivalence of
the £7, t norms and the usual L? norm.

DM Islle e < Nlsllzs < llslle g (11)

Here Dy, is a constant which depends only on & and for k£ = 3 Dy = 10.03 [23, 25]. These norms will be
essential in the knot removal procedure.

5.1.4 Non Uniform Rational B-splines

When the theory of B-splines was under development most algorithms used a uniform distribution of the
knots meaning that they were equally spaced. This caused high oscillations between control points and in
general poor results when fitting points which were unevenly spaced. The definition of B-splines given in
the previous section, is general and valid for non-uniform knot vectors.

A further step is to introduce the idea of weights associated with each spline B-spline coefficient.

Definition A NURBS spline is given from the following formula:

SN  wiei By (1)
YG wiBig(t)

The knot vector t on which the spline is defined is again the same as in (Eq.6). As we can see when all
w; = 1 we obtain the B-splines representation. The NURBS form was introduced to deal with the problem
of exact representation of analytic shapes, and to introduce higher flexibility in the user interactive design.
It is possible also to have NURBS and B-splines with identical knots in order to represent discontinuities.
However, for our purpose B-spline representation with non-repeating knots is adequate. Hence, to avoid
unnecessary software complexity from now on we will refer only to non-rational non-uniform B-splines.

s(t) = (12)

5.1.5 Bivariate Splines

The theory of one-variable splines can be extended in different ways to functions of more than one vari-
able. The most common are the tensor product splines [23]. Most of the algorithms applied to univariate
splines can be applied also to tensor product splines, but their restriction to rectangular domains is a serious
disadvantage. As we mentioned before other types of splines ( over triangular domains) are more flexible.
However they are far more complex and therefore computationally less attractive.

Definition. Consider the strictly increasing sequences

=X <A < - < A1 =0,
c=jig < p1 <+ < oy = d.

The function s(z, y) is called a bivariate (tensor product) spline on D = [a, b] X [, d], of degree £ > 0 in =
and [ > 0 in y, with knots X and p in the z- and y-direction, if the following conditions are satisfied:

24



My alv )

S
AL
= Ay
=

\
3
Q

Ny 5 le

NN
N

(LTRSS

Ny o lod M, g ie)

Source for all spline figures: Curves and Surfaces in CAGD, Fujio Y amaguchi.
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1. Oneach sub-rectangle D; ; = [A;, Ai1] X [15, ptj+1], s(z, y) is given by a polynomial of degree & in
zandliny.

2. The function s(z, y) and all its partial derivatives up to £ — 1 and / — 1, are continuouson D .

Otis(z,y) ) )
WEC(D),'L:(),,H—l,]:O,,m—l

Extending the ideas of vector spaces and basis functions, we can express every spline in D as a linear
combination of B-splines. If we extend the A and x vectors as we did for the univariate spline we will obtain
two new knots vectors u,v. Let N =n+ &k — 1, M = m + [ — 1 then:

N-1M-1

s(u,v) = Y Y ¢ iBikul(w)Giv(v), (13)
0 0

where the B; . w(z) and G ; v (y) are the B-splines defined on u and v knot sequences respectively (Eq. 4).
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5.1.6 B-Spline Representation of Curves and Surfaces

A parametric B-spline curve f in ¢ of degree & defined on the knot vector t where each component is a
B-spline function with the same knot vector t, i.e.,

ft) = (/... 7
fe) = ZC?Bi,k,t(t)

i = Z ! Bi k(1)

f(t) = Z CiBi,k,t (t) . (14)

The coefficients c; of the spline are vectors ®¢. They are called also the control points of the spline. One
property of splines is that they belong to the convex hull of their control points. This is important because it
denotes the non-oscillatory nature of splines.

For the surface we use exactly the same pattern. Let k£ and [ be the order of the splines in the » and v
direction and let u and v be two knot vectors. Then the bivariate function to represent the surface is given
by:

F(u,v) =YY ¢ijBigu(u)Bjiy(v) = by, (1)Chiy(v). (15)
g
Where again F = (F!,..., F'?), and c; ; are the control points of the surface. Note that Bézier curves and
surfaces are a special case of B-splines and surfaces.

5.1.7 Discrete B-Splines

The theory of discrete B-splines and the associated algorithms were developed to provide a framework
for understanding and implementing subdivision techniques for B-splines. Such technologies are useful
for rendering and interactive design but they turned out to be also useful for numerical approximation and
smoothing.

Consider a spline written in terms of B-splines on a knot vector 7 and of degree &:

T :=(Toy -+ oy TN+k),
N-1

s(r) = ) ¢iBigr(7)
=0

There are certain situations where it is useful to increase the degrees of freedom of s by adding / additional
knots to the already existing ones. Suppose we let M = N + land t := (lo,...,trm+k) De the new knot
sequence so that = C t. With B; ; ; the B-splines on t, s can also be written as a linear combination of this
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extended basis with unique coefficients d;:

M-1
s(t) = Y djBjrg(t).
=0

The problem is given k&, N, M, T, t, as above compute d;. There are several ways to do that. We can choose

M points pg, . . ., par—1 and solve the interpolation problem,
M—1
Z d;B;jrt(pi) =s(pi), 1=0,1,...,. M — 1.
7=0
Ift; < p; <tj4641,7 =0,..., M —1, thenthis set of linear equations has a unique solution dy, . . ., dar—1

[3]. Lyche etal. in [3] propose a method were d; can computed as follows:

N-1
d; = Z b; jc;, or d = Be,
0

bij = iky1,76(7)-

The numbers b; ; are called discrete splines and the matrix B is called the insertion matrix of order £ + 1
from the knot vector 7 to knot vector t.The numbers «;(;) are defined as follows:

Definition. Suppose 7;4+, > 7. Then

a;1 =

)

L 7 <1y
0 otherwise

Moreover for £ > 1 and all ¢, 7,

@ik+1 = (Ljrk — ) Bik(d) + (Tivks1r — Ligr) Bivr,6(4),

where

@i k41 . .
Bippr =1 Ttk Ti < TZ""“.‘H
' 0 otherwise

Based on this definition Lyche et al. devised the Oslo algorithm to create the insertion matrix B given 7.t
and k provided that 7 C t. Based on their work we have implemented the Oslo algorithm in C. For further
details about derivation and proofs see [3].

5.2 B-spline Curve Smoothing
5.2.1 Statement of the Problem

The contours extracted with the help of AVS consist, on average, of 400-1000 points. Two problems are
associated with this procedure. The first one occurs when user intervention is necessary to modify the
boundary of the bone resulting from the thresholding procedure. As a result, an error is introduced and the
geometry becomes abnormal. The second problem is that the same geometry can be reproduced using less
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points, even in the case when the noise is minimal. This happens because the module of AVS that creates the
contour points does not recognize topological features, for example linear segments, which can described
with less points.

Since we deal with planar contours we restrict the following formulation in the 2-D problem. The
extension to any higher dimensions is straightforward. Given a setof N pointsP; = (z;,y;),¢=10,...,N—
1 we have to:

1. Interpolate these points with a parametric curve f(¢) such that:

£(t) == (2(t),y(t))
f(tz) =P;

It is common practice in computational geometry to have ¢ € [0, 1].

2. Find g(¢) such that:
[f-gl<e

in some suitable norm, where ¢ is a given acceptable error.

Many times the first step is skipped if it is known a priori that the data contain errors or due to the large
number of sampled points. In order to proceed the form of the function f must be chosen. One may use
polynomials, splines, trigonometric functions or some other suitable basis. In the case that splines are the
choice these additional parameters must be determined:

e The degree k of the spline,
e The number and the position of the knots ¢,

e The coefficients c;, (see Eq. 14)

In this work we are using cubic splines (k¢ = 3). We do not need any higher continuity of derivatives
thus we follow the common practice of the CAD community. As for the other parameters to be determined
things are not nearly as simple. In the literature several spline fitting algorithms have been described which
differ from each other in the choice of the knots and the approximation criterion. Various methods for
knot creation have been proposed: least squares, weighted least squares, minimization of functionals, knot
insertion, and knot removal algorithms [30, 31].

Most fitting algorithms deal with the problem of knot selection either arbitrarily or by solving computa-
tionally demanding, non-linear [27, 24] problems. For example one might choose to use a uniform partition
on the [0, 1] interval depending on the number of points. This method is considered obsolete. Another way
is to use arc length approximation. A suitable one for our case is the chord length parameterization. We
start from 0 and then each subsequent knot is given by the Euclidean distance between the points. When
the distance between the points is too big this can lead to incorrect parameterization. Generally the problem
with fitting algorithms is that there might exist another basis (i.e. another knot sequence) which leads to
better approximation.
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Because of the amount of data for each contour we believe that the method proposed by Lyche [1, 2]
is a suitable one. First we interpolate the points of the contour using a cubic B-spline. Then we apply
the knot removal algorithm given in [1]. The idea is that from the original set of points only a few are
necessary to describe satisfactorily the underlying geometry. Taking into account that even the initial set is
an approximation of the object boundary, we start with this initial approximation which is easy to compute,
but it might contain excessive points or noise, and we perform data reduction and smoothing.

Using the chord length parameterization we obtain the starting knot sequence. Because the points are

very close to each other essentially this is equivalent to the arc length. Also we are guaranteed that we have
a dense enough sequence of knots that the “optimal” solution is included to this knot vector.

5.2.2 Knot Vector Creation and Interpolation

We start with the set of points Py, ..., P,,_;. Because the contour we want to approximate is a closed line
we can extend this set as follows:
Pn = Po.
Then we can define a knot vector a as:
ag = 0,
a;=[|P;—Pi1 ||, i=1,...,n.
We normalize a in [0, 1],
a; < &
an

In order to produce a B-spline basis that spans all the splines on the knot vector a we have to create a new
vector t. Since we are dealing with periodic splines the knot vector t is given by the following relations
[26](for cubic splines & = 3):

t = (to,... lnte)
ti = ag— (an — ai4n-3),1=0,1,2,
tigs = a;, 1=0,...,N,
litn4a = ap+ (@41 —ag), 1=0,1,2.

We can write f as:
n+2

f(t) = Z diBi,t (t)

where we have suppressed the subscript denoting the degree of the B-spline. To interpolate the given points
we form the following n equations:
n+2
> diBig(t;)) =Pj,j=0,...,n— 1. (16)
=0

An inconsistency appears to exist between the number of equations and the number of unknowns since we
have n equations and n + 3 unknowns. However, because the curve is closed the restrictions in continuity
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and of the fact that P,, = P lead to:

dn — d07
dn-l—l = d17
dn-|—2 - d2.

Because of the locality property of the B-splines the resulting matrix is tridiagonal and can be solved with
O(n) operations. Of course we have to perform this operation twice, for the z- and y-direction. We have
used the code described in [32].

5.2.3 Knot Removal

Given n points representing a closed contour we have computed the interpolating spline f. The data neces-
sary to define this spline are its degree £, its knot vector t and the coefficients matrix d,. We denote by Sy ¢
the set of all splines of degree & on the knot vector t. So if t = (to, ..., tut2k) then Sp¢ isan (n + k)7
dimensional space of functions given by

Skt = span{Bo k- -+ Buyk—1kt}-

Note that if 7 C t then S, + C Si ¢. As we show before we are interested in the restriction of the elements
of Sk to the interval [tx,t,4x] = [0,1]. The knots ¢541,...,t,4+%—1 are called interior knots, and these
are the only knots we try to remove. In [1, 2] they deal with open curves. We had to slightly modify their
algorithm for closed curves. For closed curves each time we remove knots we have to modify the extended
set, i.e. to,...,tp_1 and t,ypy1,. .., Lasak inOrder to assure that the new curve is C% at the end points.

Suppose anorm || - || on Sy ¢ has been chosen. We want to compute a subspace Sy + of lower dimension
and an element g of S, 7 suchthat || f—g ||< €. In general, it is not necessary to produce the lowest possible
dimension. The aim is to reduce the given vector up to an error within reasonable computational time.

The algorithm we are using involves four main components. We refer to these as Weight, Rank, Remove,
and Approximate. In the first step we are computing the weights of the knots. These numbers indicate the
significance of a knot in specifying the spline shape. The second step is to rank these knots. The third step
is, given a specified humber of knots, to remove the least important. In the final step, for the given reduced
knot vector we compute a spline g = G/(t; 7)f on this vector which minimizes the “distance” (since each
spline can be considered as a vector) from the original spline. With G we denote the approximation, in our
case this is a least squares approximation.

When a vector 7 and a spline g is computed we may be able to continue the reduction. If 7 = t it means
that all the knots are important within the specified error. If 7 contains no interior knots this means that all
the knots were removed. In practice we will have some interior knots. We can try to improve our result by
removing more knots. Here is a schematic algorithm:

1. 7% =t;g"=f; (Initialize)

17| might appear that there is an inconsistency between the dimension given in (Sec. 5.1.1) and this one. Because we work with
a closed curve of n points is like having n + 1 points since the one more point (the end of the curve) is implicitly given. Thus the
dimensionis (n+1)+k —1=n+k.
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2. fori=0,1,2,...

1. if 7 has no interior knots then stop;
2. Compute weights; (Weight)
3. Rank knots; (Rank)
4. Binary Search on r
1. Initialize »; (Number of knots to remove)
2.7 =71/ —rknots; (Remove)
3. g =G(t;7)f;  (Approximate)
4. error =|| f — g ||; (Compute Error)
5. if error < e increase r;
6. else decrease r;

5. if r = 0 stop;
6. T+ =1,
7.8 =g;

The algorithm generates a sequence (Sy ;) of shrinking subspaces of Sy ¢ and a sequence of approxima-
tions (g’) such that:

Tj+1 C'rj.
If —g’]| < e

In practice the majority of the knots are removed in the first few iterations. We now present some important
details of the algorithm.

Weight. Let w; denote the weight corresponding to knot T§ and S; + denote the subspace of spline functions
on the knot vector 7 = 7! — v} = (7, ..., 7} ,7/,4,...) The basic idea is to let w; be an approximation
to dist(f, 5;+) in some norm. In this implementation we are using the maximum norm. For simplicity in
the notation we will show the method for / = 0 so that 7/ = t and g’ = f. It is understood that the same
procedure is applied for (I = 1,2, ...). We also suppress subscript . We compute the weight of knot ¢ ; and

we set

w; = £~ gl where
g = min [[f—g (17)
8ES; T

Because g € S and f € S we extend g in S
g = ZCiBi7T € ST

where m = n 4+ k — 2 for [l = 0. Since (See Sec. 5.1.7) S+ C St, we have

m+1

g= Z ¢; B¢
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where (See [1] and Sec. 5.1.7)

o ci, fori=0,1,...,5—k—1
¢=(cY%cle?) =< e+ ey, fori=j5—Fk,...,7—-1
ci_1, fore=y4,...,n+1
and
) _Ti+k+1—t]' B t]‘—Ti
i = ;=

Titkt+l = Ti ' Titk—1 — Tq
Soifec=(c% cl,c?), ¢ = (e%el,¢?) andd = (d°, d}, d?) (Eq. 16) with

e (Cos.vy € 2)T
— (Cjk—1,--- c]-_l)T
= (c], )T
o (éo, C] k— I)T
e = (&_ko1,..., )T
& = (&41yeeemen)t
d° = (do,...,djg2)"
d' = (]kh”w@ﬁ

d2 = (dj+17"'7dm+1)T

The solution for ¢i is not unique since we are solving an £'n fty problem. We can obtain a solution for (Eq.
17) by setting

CO — éO — dO
C2 — é? — d2
For ¢! solve min.: [[d* — Be!||, (18)
where ¢! = Be! and
F1 0 . 0 0
Aj-k ik o 0
B_ 0 Aj—k—1
: : pi—2 0
0 0 - A1 gy
0 0 e 0 1

is a matrix with & + 2 rows and & + 1. A specific method for solving (Eq. 18) is presented in [1]. For a short
description see Appendix 9.1. It can be solved by invertinga 5 x 5 matrix for each knot. Finally we get

w = [|d - Be||

Rank. After we have computed the weights we have to rank the knots. For each knot ¢; we compute each
ranking number v; which is an integer as follows:

1
ol Inwj — Ine
In2+1
2
o2 Inwj — Ine
In2+1

v; = max(v', v?)
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and then we sort v; in a nondecreasing order.

Remove. If we are to remove r knots from t, then we remove all the knots whose rank is strictly less than
v,. Because many knots might have equal ranks it is possible that the number of knots we removed is less
than . To choose the remaining, say p knots to be removed, let ug < --- < u, be the knots with ranking
numbers equal to v, listed in the order in which the occur in t. We remove (ugj, . .., uq4,_, ), Where

(r+1)(z40.5)
p

di:[ —|—1J—1

that is we remove the knots uniformly on subscripts.

Approximate This problem is similar to the one which occurred in the "weight” step but in more general form
since we are removing more than one knot. However, here we use best approximation in the £2, t-norm. We
want to compute g given f, 7, t and & such that:

TCt
M
g8= XiocBirr= Y aBikg
1=0

f=5Md;Bi s

ming [|f — g|| 2

were the norm is explained in (Sec. 5.1.3, Eq. 9, 10). The coefficients q; which define g on S are computed
with the discrete splines insertion matrix B which we compute with the Oslo algorithm. So we end up with
a usual algebraic least squares problem of the form:

min HEE/Z(BC -d)

42

It is shown [1] that it is advantageous, with respect the condition number of the normal equations of this
least squares problem, to solve the following for x,

min | By (BEZ*x - d) H2

and then ¢ = E;l/zx. The condition number of the above equation depends only on £ and is small for low
values of k£ [23, 1, 25]. A discrete norm is used because it is simple and fast to work with, and the £2, t-norm
because it gives rise to linear system of equations, and it approximates L2 well. However it does not give
any pointwise information about the error. A solution to this problem is the folowing: when measuring the
error in order to decide how many knots to remove, ¢°° is used. We used both norms and did not observe
any noticeable difference. In any case the user can choose the norm in which error is measured.

6 Surface Skinning

Surface skinning is a process of passing a smooth surface through a set of curves [28]. Usually these curves
represent cross-sections of an object so they often mentioned as cross-sectional curves. Using the B-splines
representation, it is possible to “force” a surface to assume almost any curve as an parametric curve be it a
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Curve Smoothing After Approximation: 36 Points

Infinite Norm

Figure 9: Results of the curve smoothing procedure
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piecewise linear curve, conic section or a high order spline. However, in order to skin across the curves of
various types, they all have to be made compatible, i.e. the have to have the same degree and to be defined
over the same knot vector. The equation of a tensor product b-spline surface is given by

F(u,v)= Z Z ¢ ;i Bigu(u)Bjv(v) = b%’u(u)Cbhv(v). (19)

7

In our problem w corresponds to ¢-variable of each contour and v represent the z-axis of the CT-scan.
Therefore if we hold v fixed, we recover the contour corresponding to the specific z. Recall that v € [0, 1].
The compatibility requirement is now apparent. Each curve has to use the same By, ,, functions, thus £ and u
must be the same for all curves. We can create a knot vector that is the union of all curves’ knot vectors and
then, by using discrete B-splines, we can compute the coefficients of each curve in the new extended spline
space. However, this procedure is inefficient. 1f we have 40 curves with 20 knots each, the latter technique
would create 40 x 20 x 40 control points. It would essentially cancel the previous knot removal operation,
and thus we follow a different approach. We divide the [0, 1] into » — 1 intervals and we take the geometric
average of the knots that lie within each interval. The result of this process is a set of n knots where n is
specified by the user. So comparing with the aforementioned example this average leads to a approximate
skinning of the surface by using only » x 40 control points. In practice 30 — 40 knots where enough to
reproduce the curves from the curve approximation.

The next step is to interpolate the curves on this new vector. Let
u, (Uo,...,’dk = Ov"'vun-l-k = 17"'7un+2k)

be the union knot vector. The vertical direction v-vector is created in th usual way of chord length parame-
terization [28, 27]. For each curve j we compute n points as follows:

P;; = ZdljBl,k,u(Ui) vi=k,...,n+k.
{

where d; are the coefficients of the jth curve on the Sy .. Then we solve the following linear system [26, 28]
for C:
P; ;= biu(u;)Chiy(v)).

The number of operations to solve this system if O(n x ¢) where ¢ is the number of curves. The created
B-spline surface is output in the IGES 5.2 formatted file.

Our implementation provides the user with the ability to choose which curves he/she wants to skin.
This represents a crude way of data reduction over the v direction. Moreover one can create multiple files
representing different branches of a complicated structure. However, these surfaces will be disjoint and
further manipulation must take place to put them together. We used PATRAN’s solid modeling features to
complete this task.

7 Femur Pre-Processing

We applied the described methodologies on CT-scans from patients and cadavers in order to create geometric
models for the femur and the acetabulum. For the femur we obtain a representation of the surface by using
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1200 control points, 40 knots for each curve and 30 curves out of 104. The original data file from the AVS
extraction procedure contains 60,000-100,000 points while the final file has around 1000-2000 points.

During the THA operation the surgeon has to cut the femoral head and drill a hole into the femur in
order to insert the femoral part of the implant. Therefore, further processing of the femur surface is needed
in order to create the final geometry. Our first approach was to use solid boolean operations between the
(triangulated) femur volume and auxiliary volumes representing the volume of the material to be removed.
This technique worked but the resulting surfaces were very badly shaped and it was impossible to create a
mesh. The problem can be simplified by splitting this procedure into two parts. The first is the cutting of the
femoral head and the second is the drilling of the intramedullary canal in order to create the cavity in which
the implant sits. We believe that it is possible to resolve these problems with of-the-shelf algorithms.

The femoral head removal can be simulated as follows. Using 3 points we can describe mathematically
the plane of the cutting. Then using a surface/plane intersection algorithm we can create a curve which
represents the boundary of the final top surface. It is trivial then, to skin this surface with the remaining
set of curves and create the final outer surface. Another approach which currently explore by the MRCAS
group is to rotate the CT-scan data and create the contours in planes parallel to the cutting plane and then
just discard the upper part of the femur.

The creation of the femoral cavity is more tedious to achieve. Computationally, is very difficult to
perform surface/surface Boolean operation since the two surfaces are overlapping (Sec. 5.1). The solution
is to use the plane/surface intersection algorithm we mentioned before and create cross-sectional curves on
the same z-planes as of the CT-scan and then perform boolean operations on the two curves set.

We have written a C program which runs in real time within an ANSY'S session in order create the the
blended femoral cavity (Fig. 10). We also applied these ideas using PATRAN solid modeling modules and
the results are very satisfactory. Furthermore because the resulting surfaces are the conformal mapping of
a rectangular domain they can be meshed using quadrilateral elements, which is important for the contact
mechanics analysis. We also managed to mesh the resulting volumes in O (hour) time.

8 FutureWork

There are many issues that have to be addressed in order to complete the patient specific pre-operative
analysis. The surface reconstruction of the femur still needs considerable user intervention. The algorithms
of surface/plane and curve/curve intersection must be integrated into our program.

Another important issue is the variation of the material properties. Cortical bone can with reasonable
accuracy, be modeled as linearly homogeneous isotropic elastic material. In the contrary trabecular bone
is in-homogeneously anisotropic, admits large strains and plastifies. Several ideas have been explored in
order to distinguish between cortical and trabecular bone. One is to represent these two regions as different
volumes. The other one is to allow material properties vary among and within elements. The latter requires
the development of an interface between CT-Scan data and the mesh generator. The former requires extra
work for the solid modeling.
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Intramedullary canal preparation for implant insertion.

Figure 10: Preparation of femur intramedullary canal using lower level (area instead of volume) Boolean operations
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CT-scan Data: 104 Slices, 40000 Points. Approximated Data: 104 Slices, 4000 Points

Femur Modeling: Surface Reconstruction

¢

Skinned Surface: 1800 Control Points.

Figure 11: Femur skinning.
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Figure 12: Femur branching
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Figure 13: Boolean operations on femur in order to produce the final model
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Surface Mesh

Final Volume Mesh: 4649 Elements

Figure 14: Computational mesh of the femur.
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Figure 15: Application of the method on pelvis.
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Meshing of the resulting surface is performed by commercial software as we mentioned before. In the
case of femur, one can take advantage of the cylindrical topology. We are developing a module that uses
conformal mapping to create a mesh on each curve plane using quadrilaterals and then stack the elements
together.

The goal of the research undertaken by our team is to improve post-operative quality of life of the patient
via a pre-operative analysis. We hope that with this work we have make a small step toward this goal.

9 Appendix

9.1 Computingthe Weights

In this section we consider the problem
min [|Be — d||
C

where d € R”, ¢ € "' and the matrix B € R"*(*~1) has the special form

o 0 0 0
ALy 0 0
B_ 0 A
Hn—3 0
0 0 /\n—2 Hn—2
L0 0 0 An_p

The solution of this problem can be found [1] by solving a linear system of » equations in n unknowns'®

Ax=d
where for the matrix A takes the form
(1 0 0 0 (=1~
Nick ik 0 0 (-r?
A 0 Aj_k—1 :
: : pi—2 0 1
0 0 A]‘_l Hi—1 -1
| 0 0 0 1 1 ]

If x = (2o, ..

9.2 NuagesInput File

., &,_1)T solves Ax = d then the solution c is given by ¢; = =; for j = 0, 1, ..

Ln— 2.

Assuming that the CT-scan runs on the z-axis and the image produced on the zy-plane The structure of the
input file for nuages is the following: s integerl

81n our casen = 5
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v integer2 z floatz

{

floatx floaty

}
v integer2 z floatz

{

floatx floaty

}
where integerl denotes number of slices and integer2 denotes number of points to each slice. Different
contours are included in curly brackets within each slice.
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