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We present a new method for the solution of the unsteady incompressible Navier-Stokes equa-
tions. Our goal is to achieve a robust and scalable methodology for two and three dimensional
incompressible laminar flows. The Navier-Stokes operator discretization is done using boundary
integrals and structured-grid finite elements. We use a two-step second-order accurate scheme to
advance the equations in time. The convective term is discretized by an explicit, but uncondition-
ally stable, semi-Lagrangian formulation; at each time step we inverta spatial constant-coefficient
(modified) Stokes operator. The Dirichlet problem for the modified Stokes operator is formulated as
a double-layer boundary integral equation. Domain integrals are computed via finite elements with
appropriate forcing singularities to account for the irregular geometry. We use a velocity-pressure
formulation which we discretize with bilinear elements (Q1-Q1), which give equal order interpola-
tion for the velocities and pressures. Stabilization is used to circumvent the div-stability condition
for the pressure space. The integral equations are discretized by Nyström’s method. For the specific
approximation choices the method is second order accurate. We will present numerical results and
discuss the performance and scalability of the method in two dimensions.
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1. INTRODUCTION

In [3] we have introduced the Embedded Boundary Integral method (EBI) for the
steady Stokes equations. In this article we extend this method to the incompressible Navier-
Stokes equations.

Our ultimate goal is to develop algorithms for viscous flows with moving boundaries
that discretize the fluid equations on static grids to avoid the high costs of time-dependent
mesh generation.

Our method relies on the idea proposed in A. Mayo’s work [15] which combines a
boundary integral formulation with fast solvers on a regular volume grid. The boundary
integral formulation is attractive for simulation of fluids with dynamic boundaries because
it allows for natural coupling of the equations for the fluid and surrounding or immersed
solids.

Pure boundary integral formulation can be used for certain types for PDEs. This ap-
proach eliminates the need for meshing of the volume and it reduces the size of the discrete
problem decreasing the problem dimension by one. Although Navier-Stokes equations do
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not admit a boundary integral formulation directly, most effective methods to solve the
Navier-Stokes equations involve linearizations, and thus integral equations can be used.
There are a number of difficulties with a pure boundary integral formulation. The lineariza-
tion of the convective term results in linear PDEs with non-constant coefficients; for such
equations the construction of the fundamental solution is as difficult as solving the original
problem. Furthermore, distributed volume forces are present in the equations. Computing
integrals for such volume terms, also known as Newton potentials, requires acceleration
methods such as Fast multipole methods (FMM), [7]. Another important problem is that
the integrals are difficult to evaluate accurately for points close to the boundary because
the kernels become nearly singular. Accurate and fast integration schemes are yet to be
found in three dimensions.

The EBI method replaces explicit integral evaluations with solving the equations on a
simpler domain. With EBI method we embed the flow domain inside a larger domain, for
which fast-scalable solvers are available (we use a regular grid) and to which the velocity
and pressure fields are extended. We use an integral formulation to compute the interface
jumps of the velocity and its derivatives and then we use Taylor expansions to express
these jumps as a source term at regular grid points close to the interface. This source
term, which appears in the right hand side of a the regular grid problem, we call Taylor
Expansion Stencil Correction (TESC). Depending on the details of the implementation,
the method can be first, second, or higher order accurate. EBI originally appeared in Anita
Mayo’s work [15] for the Laplace and biharmonic operators. The details of this method
and its application to the steady Stokes problem are described in [3]. We should mention
that using regular grids is not the best approach for high Reynolds numbers due to the
presence of thin boundary layers. A block structured grid has to be used in in this case;
however, overall structure of the method can be preserved. In this paper we consider only
regular grids.

The basic components of the embedded boundary integral method, outlined in Section
2 are a Cartesian grid solver for the modified Stokes equations and a boundary integral
solver for the homogeneous modified Stokes equations. In order to extend EBI method to
the Navier-Stokes we need two new tools: a semi-Lagrangian formulation for the convec-
tive term, and a double layer formulation for the modified Stokes operator

αu − ν∆u + ∇p = 0, divu = 0.

described in Sections 4 and 3 respectively.

Related work. For each of the three principal aspects of the method (boundary in-
tegral equations, Cartesian grid solvers, semi-Lagrangian methods) there is a substantial
body of work which we discuss briefly in relation to our method.

Integral equation formulations for the Navier-Stokes equations. There have been sev-
eral attempts to use boundary integral equations to solve the steady and unsteady incom-
pressible Navier-Stokes equations. The majority of algorithms are based on non-primitive
variable formulations, for example, velocity-vorticity and stream function vorticity formu-
lations. The latter, combined with a Lagrangian treatment of the convective method, are
also known as vortex methods. Here we do not attempt a comprehensive review of the
literature but we have chosen some representative articles.

In [6] a stream function formulation is used to solve the steady- and unsteady-state
Navier-Stokes equations. The steady-state one is solved by using a volume potential ap-
proximation for the stream function in combination with a Newton method or a fixed point
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method. The volume integrals are carried out by solving non-homogeneous Poisson prob-
lems on the disk; thus each GMRES iteration for the Newton step requires two Poisson
solves and one homogeneous biharmonic solve. The unsteady case uses a similar approach
but the convective terms are treated explicitly.

Integral equations are used in [2], with a stream function-vorticity formulation. Integral
equations are used to compute the correct boundary condition for the vorticity and then a
mortar-type unstructured grid finite element method is used to solve elliptic problems for
the vorticity and stream functions. This method requires four scalar regular grid solves and
one boundary integral solve.

In [18] a velocity-vorticity formulation is used. A Lagrangian approach is coupled with
an explicit diffusion step to advance the vorticity. Volume integrals are used to compute the
voriticity that corresponds to non-slip boundary conditions around a sphere. The method
is combined with fast parallel multipole methods and is shown to resolve the flow for high
Reynolds numbers.

In contrast to these methods, we chose to use the primitive variable formulation (veloc-
ity and pressure). We intend to use our method as a building block for fluid-solid interaction
problems; in this case the interface conditions often include both Neumann and Dirichlet
conditions, and such conditions are best treated using primitive variables.

Existing velocity-pressure formulations using boundary integral equations are based on
the explicit treatment of the convective term. As we have mentioned, the problem with this
approach is the need to compute the Newton potentials accurately enough to resolve the
boundary layer. A popular method is the Dual Reciprocity Method [19] in which a radial
basis function interpolant of the convective term is constructed. There are several open
issues with this approach: the optimal choice of the interpolation scheme, the number of
interpolation basis functions and its considerable computational cost. Moreover, although
several researchers have attempted to use it to solve viscous flow problems, the results are
appear to be unsatisfactory.

Cartesian grids. There is an extensive literature on solving Navier-Stokes equations
on regular grids. We discuss briefly some of the papers most closely related to our work.

In [14] the immersed interface method is used to solve Navier-Stokes equations with
elastic boundaries approximated by spring systems. Dirichlet problems can be solved by
using very stiff springs; the jumps come from explicit time stepping on the boundary de-
formation.In [13] the immersed boundary method is used to compute a flow around the
cylinder. Dirichlet conditions are also applied approximately by using very stiff springs.
The time restriction from the explicit coupling of the springs and the flow is quite severe,
requiring two orders of magnitude smaller a time step than that dictated by accuracy con-
siderations.

In [4] the Navier-Stokes equations are used with a stream function-vorticity formula-
tion, using the immersed interface method. Time stepping is done through a fractional
step approach in which the convective terms are treated explicitly and thus a CFL-type
restriction applies. The diffusive terms are solved with the immersed interface method.
Additional equations are used for the interface conditions and Schur complement matrix is
computed and then factored in order to make the computation efficient.

Semi-Lagrangian methods. The Semi-Lagrangian methods (which are also known
as Lagrange-Galerkin, spline-characteristic method, or characteristic-Galerkin) allow for
explicit, yet stable treatment of convection. The time derivative is discretized in Lagrangian
framework, however unlike Lagrangian methods that track particles through time and need
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regridding, the particles are traced back from the grid points. This processes is repeated
at every time step and it requires the solution of a ODE (backward in time) and an a
interpolation scheme to compute the past velocity at the departure points. The latter is
the biggest source of complications since it can introduce excessive diffusion. In some
sense, semi-Lagrangian methods can be viewed as a very effective upwind schemes. In [5],
the method is used for convection-diffusion equations and in [17] for the Navier-Stokes
equations. A good review for structured grids is given in [20]. For unstructured grids,
spectral methods and more complete references on semi-Lagrangian methods see [22].

Notation. Scalars will be denoted with lowercase italics, vectors with lowercase
boldface letters; tensors and matrices will be denoted with uppercase boldface letters. In-
finitely dimensional quantities will be in italics, whereas finite dimensional ones (usually
discretizations) will be non-italic fonts.

2. DESCRIPTION OF THE EMBEDDED BOUNDARY INTEGRAL METHOD

We seek solutions of the incompressible Navier-Stokes equations in a multiply con-
nected domain with Dirichlet boundary conditions. We choose a primitive variable formu-
lation (velocities and pressures), for which the momentum and mass conservation laws are
given by

∂u

∂t
+ (∇u)u − ν∆u + ∇p = 0, in ω × (0, T ],

div u = 0, in ω × [0, T ], (1)
u = g, on γ × (0, T ], u(ω, 0) = uinit .

Here u is the velocity field, p is the pressure, and g is a given Dirichlet boundary condition
for the velocity.

The above equation can be solved by a semi-implicit time stepping in which the con-
vective term is lagged. For example for a backward Euler method at each time step we use
the old values of velocity u0 to solve for the new velocity and pressure u, p:

u

δt
− ν∆u + ∇p =

u0

δt
− (∇u0)u0 divu = 0, in ω. (2)

At every time step a system of the following general form must be solved:

αu − ν∆u + ∇p = b, in ω div u = 0, in ω, u = g, on γ. (3)

Here α depends on the time-stepping scheme and b includes the terms that carry informa-
tion on the history of the flow. In order to avoid CFL-related time restrictions we use a
semi-Lagrangian approach (4).

We split the solution of the problem into several steps as follows. We first embed ω
in an easy-to-discretize domain Ω; we use a rectangle, but other domains can be used. By
linearity we decompose (3) into two problems: a problem with an inhomogeneous body
force and zero boundary conditions for Ω, and a problem with no body force, but nontrivial
boundary conditions:

αu1 − ν∆u1 + ∇p1 = b in Ω, div u1 = 0 in Ω, u1 = 0 on Γ; (4)
αu2 − ν∆u2 + ∇p2 = 0 in ω, div u2 = 0 in ω, u2 = g − u1 on γ.(5)
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For (5) we use a double layer boundary integral formulation (Section 3) to obtain the
velocity potential, µ, on the boundary γ. Solution u2 for an arbitrary point in the interior
of ω is the convolution of the double layer kernels with the velocity potential. The solution
of the original problem (3) is u = u1 + u2, p = p1 + p2.

A discontinuous extension of u2 in Ω, u3, can be chosen so that all the interface jumps
can be computed semi-analytically. By tracking the intersection of the interface with the
background grid and using the jump relations, we employ Taylor expansions to correct the
stencil truncation error [3].

αu3 − ν∆u3 + ∇p3 = 0 in Ω, divu3 = 0, in Ω, u3 = u2, on Γ, (6)
[[u3]]γ = µ, [[−p3n + ν(∇u3 + ∇uT

3 )n]]γ = 0. (7)

Numerically, this problem is solved using the same solver used for the problem (4), but with
a right-hand side that takes into account the interface jumps computed from the velocity
potential.

The EBI method can be summarized as follows:
For each time step,

1. compute b using a semi-Lagrangian method;

2. solve the problem (4) on the simpler domain Ω;

3. solve the boundary integral problem derived from (5) on γ to obtain the velocity
potential;

4. compute the right-hand side corrections from the velocity potential;

5. solve the second regular problem on Ω with the computed right-hand side;

6. add the solutions from steps 2 and 5 to obtain the complete solution on ω.

Let us emphasize that steps 2-6 above are carried out exactly as in the Stokes case [3].

3. THE DOUBLE LAYER FORMULATION FOR THE MODIFIED STOKES
EQUATIONS

In this section we examine a problem of the form (3) with b = 0. We also assume that
ω ⊂ R

2 is bounded and and has C2-continuous boundary. We use an indirect formulation
based on double layer potentials. We limit our discussion to the simply connected interior
Dirichlet problem. The extension of EBI to exterior and Neumann problems is very similar
to the interior problem. We use the notation

C[w](x) :=

∫

γ

C(x,y)w(y) dγ(y),

to denote the convolution for a kernel C; C(x,y)w is a dot product for vector kernels and
matrix-vector product for matrix kernels.

We can write the velocities as boundary potentials:

u(x) = D[µ](x), x in ω, (8)
p(x) = K[µ](x), x in ω. (9)

Here µ is the hydrodynamic potential.
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For the steady Stokes operator the double layer potential is given by

D0[w](x) :=
1

π

∫

γ

r ⊗ r

ρ2

r · n(y)

ρ2
w(y) dγ(y); (10)

x is the observation point, y is the source point, r := x−y, ρ = ‖r‖2, n(y) is the outward
surface normal at a boundary point y, and ⊗ is the tensor product of two vectors.

The corresponding double layer potential for the modified Stokes equations is more
complicated. An important parameter is the ratio between the zeroth-order term and the
viscous term λ :=

√

α
ν

. We also use σ to denote ρλ.
The double layer potential for the modified Stokes equations is given by the following

formula:
D[w](x) := D0[w](x) + Dλ[w](x), (11)

where Dλ is

Dλ[w](x) =

∫

γ

Dλ(x,y) dγ(y) =

=
1

π

∫

γ

v1(σ)(
n(y) ⊗ r

ρ2
+

r · n(y)

ρ2
I)w(y)

+ v2(σ)
r ⊗ r

ρ2

r · n(y)

ρ2
w(y) + v3(σ)

r ⊗ n(y)

ρ2
w(y) dγ(y). (12)

The functions v1, v2, v3 are defined using modified Bessel functions of second kind of zero
and first order k0 and k1 ([1],p.379). We also define an auxiliary function β(σ) as

β(σ) =
1

σ2
+ k0(σ) +

2k1(σ)

σ
. (13)

Then

v1(σ) =
2β(σ) + σk1(σ)

2
, (14)

v2(σ) = −4β(σ) − σk1(σ) − 1, (15)

v3(σ) =
2β(σ) + 1

2
. (16)

These formulas are derived in the appendix. The corresponding pressure is computed by
taking the divergence of the double layer potential and grouping terms together in ∇p =
∆u − αu. Let K0 be the pressure double layer kernel for the steady Stokes equations:

K0 := −
1

2π
∇x

r · n

ρ2

Let Kλ be the pressure derived from the double layer kernel Dλ.

Kλ :=
1

2π
λ2 log

1

ρ

Then the double layer potential of the pressure is given by

K[µ; ν, λ] =
1

ν
(Kλ[µ · n] + K0[µ]). (17)
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The pressure is the sum of a single layer potential of the Laplacian and the gradient of the
double layer potential of the Laplacian. The first part comes from the αu term and the
second is the same with the Stokes equations. This observation will be useful in deriving
the pressure jumps across γ.

In order to use the double layer potentials within EBI method we have to establish
the jump properties of u and its corresponding pressure, across the interface. Here we
summarize the results for a double layer formulation with Dirichlet boundary conditions.
Details are given in the appendix.

• Sλ, Dλ, and ∇xDλ are continuous across boundary γ; in addition K is continuous
across the interface since it is the single layer of the Laplacian. Thus the double
layer for the modified Stokes operator has identical jump properties with the double
layer of the steady Stokes operator.

• For smooth geometries the modified Stokes double layer operator is a compact op-
erator.

• The double layer kernel has far field decay, and thus fast multipole methods for
elliptic problems are applicable. In particular we can apply the kernel-independent
SVD-based fast matrix multiplication [3] without modifications.

• The double layer operator has a null space of dimension one for simply- and multiply-
connected interior domains. It has full rank for exterior problems. However as λ →
0 the contribution of Dλ vanishes and we recover the steady Stokes operator, which
has null spaces of higher dimension. If a rank modification based on the interface
normal is added, the indirect double layer formulation has a unique solution.

The null space is related to the necessary condition u has to satisfy:
∫

γ

u · n dγ = 0, (18)

which a direct consequence of the conservation of mass. This constraint is an indication
that for the interior problem the double layer operator has a null space of dimension at least
one. To ensure uniqueness of th solution, we use the following modification of the double
layer operator:

N [w](x) :=

∫

γ

N (x,y)w(y) dγ(y) =

∫

γ

n(x) ⊗ n(y)w(y) dγ(y). (19)

We solve for u using

u(x) = −
1

2
µ(x) + D[µ](x) + N [µ](x), x on γ. (20)

Taking limits to the boundary from the interior and exterior regions we obtain

u(x) = −
1

2
µ(x) + D[µ](x), x on γ (21)

We discretize (20) by the Nyström method combined with the composite trapezoidal
rule which achieves superalgebraic convergence for smooth data. To simplify exposition,
we assume ω to be simply connected in the remaining part of this section. Let [0, 2π] be
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the curve parameter domain and n the number of discretization points with h = 2π/n. We
discretize by:

u(x(ih)) = −
1

2
µ(ih) +

1

h

n
∑

j=1

D(x(ih),y(jh))µ(y(jh)) ‖∇y(jh)‖2 (22)

+ n(x(ih))

n
∑

j=1

µ(y(jh)) · n(y(jh) ‖∇y(jh)‖2, i = 1, . . . , n. (23)

which results in a dense 2n× 2n linear system. Here y(·) is the parameterization of γ.
One difficulty with the modified Stokes operator is that the accuracy of the quadrature

rule decreases as λ increases. Although Dλ is bounded, it is highly peaked (i.e. its deriva-
tives become nearly unbounded) and thus standard trapezoidal rule will not be as effective.
For this reason we use quadrature weights which depend on the evaluation point. Since we
want to use fast matrix multiplication methods, the underlying rule is still the trapezoidal
rule and quadrature weight modification is used only for a small number of points. For
details see [21] and [9].

Jump computation. Equation (8) is defined for points inside ω. We can use exactly
the same relation to extend u in R

2/ω̄.
The resulting field is discontinuous across the interface. From the properties of the

double layer kernel for an interior problem we have the following jump relations:

ue − ui = µ,

σe − σi = 0, (24)
(∇ue −∇ui)t = µ̇.

In each formula, the left-hand side is the difference of the limits from the exterior and inte-
rior of the domain. The last equation can be obtained by differentiating the first equation in
the tangential direction;µ̇ is the derivative of the potential with respect the parameterization
of the curve: µ̇ = dµ(y(t))/dt. Similar relations can be derived for the pressure. Higher-
order derivatives can be obtained by differentiating (24) augmented with the continuity of
the momentum equation across the interface.

4. SEMI-LAGRANGIAN APPROXIMATION

In order to obtain an efficient and accurate time stepping scheme we use a semi-
Lagrangian formulation [5]. The relation between the the Lagrangian and Eulerian de-
scription of the acceleration term is given by

du(x(t), t)

dt
=
∂u(x, t)

∂t
+ (∇u(x, t))u(x, t). (25)

were x(t) := x(p, t) is the fluid particle occupyingposition x at time t; p is its position
in the reference configuration [8]. Instead of discretizing the right-hand side, we discretize
the left-hand side; this approach requires particle tracking for x(t).

For notational convenience let

ū0 = u(x(t − δt), t− δt), and ū00 = u(x(t − 2δt), t− 2δt).

To compute the velocity at the previous time step, we have to compute x(t − δt); i.e. we
have to locate the starting point of the flow particle that arrived to the grid point x (Figure
4).
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FIG. 1 Semi-Lagrangian formulation. To discretize in time we have to locate the point
from which a particle with velocity u(t− δt) traveled to the grid point with velocity u(t).

In our numerical experiments we have used a first order backward Euler scheme, and a
two-step second order scheme:

du

dt
= 1

δt
(u − ū0) = −(−ν∆(u) + ∇p), (26)

du

dt
= 1

δt
( 3

2
u − 2ū0 + 1

2
ū00) = −(−ν∆(u) + ∇p). (27)

To compute ū0 and ū00 we solve

dx(t)

dt
= u(x(t), t), (28)

using first and second order schemes accordingly. If δx is x(t) − x(t− δt), the we obtain
the following first-order accurate nonlinear equation (for δx)

δx = δtu(x(t) − δx, t− δt), (29)

which we solve iteratively by taking a few fixed point steps (δxk+1 = δtu(x(t)− δxk , t−
δt)). The interpolation of u has to be done carefully to avoid excessive dissipation. We use
B-splines which can be shown that have very good dissipation and dispersion properties
[20]. For the second order scheme we use a similar approach with the midpoint rule, δx =
δt u(x(t) − δ/2 x, t− δt/2). The velocity at time t− δt/2 is evaluated by extrapolation:
u(t− δt/2) = 3/2 u(t− δt) − 1/2 u(t− 2δt).

5. NUMERICAL EXPERIMENTS

In this section we present numerical results that illustrate the effectiveness of the EBI
method and its individual components. We test the semi-Lagrangian solver, the modified
Stokes boundary integral solver, the effectiveness of the SVD-based acceleration and the
overall method.

Regular Grid Solver. We have chosen to solve for the velocity and pressure simul-
taneously using a finite element method with Q1-Q1 bilinear elements with stabilization
[16]. In [3] we show that optimal convergence rates are obtained (second order for veloci-
ties, first order for pressures) provided we include second-order accurate jump information.
We also provide details on the numerical methods required to solve the systems (we use a
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two level domain decomposition preconditioner which is optimal for the Stokes problem,
[11]).

First we test the semi-Lagrangian approach using an exact solution, the Taylor vortex
flow, and then using the standard test of the lid-driven cavity problem. In this tests we only
examine the regular grid solver, therefore no integral equations are used. The Taylor vortex
solution is given by:

u = e−2tν

{

− cosx sin y

− sinx cos y,
p = −

1

4
e−4tν(cos 2x+ cos 2y). (30)

An example of a vortex flow is depicted in Figure 2. The solution was obtain using the
FEM-based semi-Lagrangian method on a 642 grid for Re=100.

FIG. 2 Streamlines for the Taylor vortex flow, which is an exact solution to the unsteady
Navier-Stokes equations.

In the following table we give convergence rates for the Taylor vortex flow as a func-
tion of the CFL number for different grids. We compare semi-Lagrangian and Eulerian
methods. In the latter case the convective term is discretized explicitly by

(∇u)u ≈ 3/2 (∇u0)u0 − 1/2 (∇u00)u00.

The results are summarized in Table 1. We compare different grid sizes, different time
steps and different Reynolds numbers.

In Figure 3 we show results for a computation of a lid-driven cavity problem for
Reynolds number 10,000. In this regime the flow is unsteady and we show different snap-
shots of the flow.

Boundary integral solver In Table 2 we present results that illustrate the efficiency of
the SVD acceleration on the modified Stokes equations. We compute the flow around 36
identical uniformly spaced circles. In this case the exact solution is a modified Stokeslet.
In all cases we obtain machine accuracy for the velocity and increasing accuracy for the
pressure. Note that as λ → 0 the kernel approaches the standard Stokes operator and
thus for multiply connected geometries it will be rank defficient. As a consequence for
smaller λ values the modified Stokes problem becomes more ill-conditioned. This was
not a problem for λ = 100. The ill-conditioning also explains why the solution time is in
general smaller for λ = 100.
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FIG. 3 Time snapshot of a lid-driven cavity flow for Re = 10, 000 on a 2802 grid with
a CFL=15. The first row shows snapshots on the onset of the flow and the bottom show
snapshot from the end of the simulation. The flow for this Reynolds number is known to
be unsteady. the for the 2802 grid.
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TABLE 1
L∞(ω, t) normalized by the L∞ norm of the exact solution) for the velocity as a function

of δt and the Reynolds number. Euler shows error for the Eulerian reference. In
parentheses we give the time step as a function of the spatial grid size. In the next

columns, sl 4,8,16 we give results for the semi-Lagrangian method with time steps which
are 3, 8, and 16 times larger than that of Eulerian method. The time horizon is 4π, which

corresponds to two flow revolutions.

Re = 102

grid size Euler(2h) sl 4 sl 8 sl 16
642 1.02×10−3 4.19×10−3 6.83×10−3 1.15×10−2

1282 2.44×10−4 1.10×10−3 1.55×10−3 3.93×10−3

2562 6.80×10−5 3.62×10−4 4.59×10−4 9.39×10−3

Re = 104

grid size Euler(h/2) sl 4 sl 8 sl 16
642 4.56×10−2 1.16×10−1 1.98×10−1 2.21×10−1

1282 1.57×10−2 3.50×10−2 5.18×10−2 5.32×10−2

2562 4.44×10−3 9.17×10−3 1.73×10−2 1.79×10−2

TABLE 2
Comparison between the dense matrix matrix-vector multiplication and the SVD-based

matrix-vector multiplication for two different λ values for a geometry with 36 circles; the
exact solution is the modified Stokeslet. Setup time includes the construction of the

matrix; no preconditioning is used. Solve time is the time used by GMRES solver. We see
that as the problem scales, the dense computation grows quadratically, while SVD

computation scales almost linearly.
domain,
solution

N matrix setup solve |u|err perr

λ = 1 768 dense 3.38 10.6 2.34×10−08 2.67×10−07

svd 4.08 5.18 2.44×10−08 2.65×10−06

Stokeslet 1536 dense 13.5 41.1 2.31×10−09 2.73×10−08

svd 7.81 12.2 2.27×10−08 2.66×10−06

3072 dense 68.2 165 2.13×10−10 2.47×10−08

svd 16.7 26.5 2.00×10−09 1.99×10−07

6144 dense 318 763 2.22×10−11 2.68×10−09

svd 16.6 55.8 2.00×10−09 1.99×10−07

λ = 100 768 dense 3.45 2.30 1.16×10−05 2.73×10−02

svd 3.38 1.10 1.15×10−05 2.73×10−02

Stokeslet 1536 dense 15.0 9.00 1.45×10−06 3.42×10−03

svd 7.51 2.32 1.47×10−06 3.50×10−03

3972 dense 56.1 35.5 1.73×10−07 4.10×10−04

svd 15.8 4.98 1.82×10−07 4.31×10−04

6144 dense 336 142 1.99×10−08 4.01×10−05

svd 32.9 10.6 2.08×10−08 4.88×10−05
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Embedded boundary integral solver. We present preliminary results for the unsteady
Stokes and Navier-Stokes problems. We have chosen an synthetic solution for the steady
Stokes given by

u = 2
{

−x2y, y2x
}

, p = sin(xy), b = 4ν {y(1 + cos(xy),−x(1 + cos(xy)} .

We use the unsteady solver to “march” to the steady state solution. The initial guess an the
initial conditions are zero; the boundary conditions are mollified to their exact values on
time period which is 10% of the total time horizon. In Figures 4 and 5 we show the exact
solution and the error distribution for a 1282 and a 2562 grid respectively.

FIG. 4 Solution and error for the for the 1282 grid.

Pointwise error norms for the first-order and second-order accurate jump corrections
are given in Table 3. The first and second columns give the maximum pointwise absolute
errors for the velocity and pressure; and the third and fourth columns give results for sec-
ond order accurate jumps. We can observe suboptimal rates for the first-order jumps and
optimal convergence rates for the second order jumps. For this type of flow the influence
of the time stepping accuracy is negligible.

We also present results for the Taylor vortex flow. We solve this problem for two dif-
ferent geometries by restricting the solution to the given geometry. We vary the Reynolds

13



FIG. 5 Solution and error for the for the 2562 grid.

TABLE 3
Pointwise absolute error for the velocity and pressure.

first-order second-order
grid size uerr perr uerr perr

322 1.38×10−1 9.82×10−1 4.19×10−3 1.56×10−1

642 4.98×10−2 7.86×10−1 1.51×10−3 7.91×10−2

1282 1.49×10−2 4.38×10−1 4.68×10−4 4.78×10−2

2562 5.65×10−3 3.57×10−1 1.18×10−4 2.33×10−2

number and the time stepping in order to assess the accuracy of the boundary integral
solver.

In Table 4 we present the results for essentially the same problem as for Table 1 only
this time the flow is restricted to a circle inside the regular domain. Comparing the regular
grid solution with the EBI solution we observe that the accuracy of the Eulerian method

14



FIG. 6 A time snapshot for the Taylor vortex flow confined to a circle. First row: the exact
solution; second row: the pointwise error; third row: the vorticity.

Exact solution

Pointwise error

Vorticity

deteriorates, but the accuracy of the semi-Lagrangian methods improves. The reason for
the former is that we only include zeroth order corrections for the convective term across
the interface: we take into account the jump in the velocity and not the jump in its deriva-
tive. The semi-Lagrangian approach performs well, and we maintain optimal convergence
rates.

In the next example we solve for a flow past a circle which is inside a channel (channel
flow with obstacle). We only give qualitative results since our problem setup does not cor-
respond very well to the physics:(1) since we only useC2-continuous boundaries, we use a
Lamé curve ((x/a)n +(y/b)n = Rn), instead of a rectangle; (2) the outflow conditions are
Dirichlet instead of the more appropriate Neumann conditions;(3) the downwind length is

15



TABLE 4
Normalized L∞(ω, t) error for the velocity as a function of δt and the Reynolds number.

Euler shows error for the Eulerian reference. In parentheses we give the time step as a
function of the spatial grid size. In the next columns, sl 4,8,16 we give results for the

semi-Lagrangian method with time steps which are 3, 8, and 16 times larger than that of
Eulerian method. The time horizon is 4π, which corresponds to two flow revolutions.

Re = 102

grid size Euler(2h) sl 4 sl 8 sl 16
642 2.83×10−3 2.77×10−3 3.41×10−3 9.95×10−3

1282 6.97×10−4 7.45×10−3 9.13×10−3 3.35×10−3

2562 2.49×10−4 1.79×10−4 2.65×10−4 8.76×10−4

relatively short, thus the flow is artificially changed to satisfy the Dirichlet boundary con-
ditions. The computational domain we use is only 4d× 8d, where d is the diameter of the
cylinder. The boundary conditions in inlet and outlet are those of an unobsructed channel
flow (Poiseuille). Figure 7 shows streamlines for the Reynolds number equal to 100. For an
exterior problem such flow is unsteady but still laminar. However for the chosen problem
setup the resulting flow is steady.

FIG. 7 Flow around a cylinder for Reynolds number 100.

In the final example we solve a flow around an irregular geometry using a uniform flow
profile for the inlet and outlet. The Reynolds number is based on the dimensions of the
enclosing box (length=1). In figures 8 and 9 we show snapshots of the velocity, pressure
and vorticity fields from the initiation of the flow until it reaches a steady state.

6. CONCLUSIONS AND EXTENSIONS

We have presented a second-order accurate solver for the unsteady Navier-Stokes equa-
tions on arbitrary domains. We use a hybrid boundary integral, regular grid finite element
formulation to bypass the need for domain mesh generation on arbitrary geometries. We
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FIG. 8 Snapshots for Re=150, CFL=8, on 2562 grid

17



FIG. 9 Snapshots of vorticity for Re=150, CFL=8, on 2562 grid
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employ an efficient double layer formulation for the resulting integral equations. At each
time step the method requires two regular grid solves and one integral equation solve.

One restriction of the method, as we have presented it, is the stringent requirements
on the regularity of the boundary geometry. This can be circumvented by replacing the
jump computation for the stencils corrections by direct evaluation at the stencil points: the
jump terms can be computed to machine accuracy by plugging the exact solution in the
stencils that cross the boundary. The exact solution can be obtain by direct evaluation of
the velocity using the integral representation. This requires adaptive quadratures—but only
for the points close to a corner.

APPENDIX A: BOUNDARY INTEGRAL FORMULATION FOR THE UNSTEADY
STOKES EQUATIONS

A.1. Double layer potential for the modified Stokes equations

To construct the modified Stokeslet we compute u∗(x) := u∗(x;y, e), and p∗(x) :=
p∗(x;y, e), the solution of a free-space problem with a point load located at y with direc-
tion e:

αu∗(x) − ν∆u∗(x) + ∇p∗(x) = δ(x − y)e, (31)
divu∗(x) = 0 (32)
u(x) → 0 as x → ∞

After taking divergence of equation (31) and using equation (32), we obtain

∆p∗ = div (δe) = div (−∆φ∗e) = ∆(−∇φ∗ · e)

where φ∗ = 1

2π
ln 1/ρ is the fundamental solution of Laplace operator with r = x−y and

ρ = ‖r‖2. Therefore p∗ = −∇φ∗ · e. Substituting p∗ into (31) we get

(α− ν∆)u∗ + ∇(−∇φ∗ · e) = −∆φ∗e (−∆φ∗ = δ)

(α− ν∆)u∗ = −∆φ∗e + ∇(∇φ∗ · e)

= (−∆I + ∇⊗∇)φ∗e

u∗ =
1

ν
(
α

ν
− ∆)−1((−∆I + ∇⊗∇)φ∗e)

=
1

ν
(−∆I + ∇⊗∇)(

α

ν
− ∆)−1φ∗e

Let ψ∗ satisfy

(λ2 − ∆)ψ∗ = φ∗ or equivalently
(λ2∆ − ∆2)ψ∗ = −δ,

that is, ψ is the fudnamental solution of the modified biharmonic equation. Then it is given
by the expression

ψ∗(x;y) = −
1

2πλ2
ρ2(ln ρ+ k0(λρ)), (33)

where k0 is the modified Bessel function of order zero. Therefore the fundamental solution
is obtained by

u∗(x;y, e) =
1

ν
(−∆I + ∇⊗∇)ψ(x;y)e,
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and by taking e for each coordinate we can construct the the modified Stokeslet tensor

U(ρ) =
−1

2πνλ2

{

(−
1

σ2
−

k1(σ)

σ
+ −k0(σ))I + (−

2

σ2
+ b+

2k1(σ)

σ
+ k0(σ))

r ⊗ r

ρ2

}

(34)
Combining this equation with the relation for the pressure we can compute the stress

tensor of the fundamental solution. Its adjoint, applied to the surface normal, is the double
layer potential. The derivation is somewhat lengthy but straightforward.

A.2. Null spaces of the double layer potential operators

Since double layer operator D is a compact operator, in this section we use the Fred-
holm alternative ([12],pp. 47–48) to derive the properties of the double layer operator in
three cases: bounded domain, unbounded domain and multiply connected domain. Our
analysis is based on the analysis for the steady Stokes operator in [10].

The modified stokes equation in ω with boundary γ is

αu − ν∆u + ∇p = 0 in ω, div u = 0 in ω, (35)

LEMMA 1 (Lorentz Identity). Suppose (u, p,T ) and (v, q,S) are two solutions of the
modified stokes equation, then div (Su − Tv) = 0.

LEMMA 2 (Energy Identity).
∫

ω
αu · u + T · ∇u+∇uT

2
=

∫

γ
(Tn) · u

Notice −qI ·(∇u+∇uT) = −q div u = 0, we have T · ∇u+∇uT

2
= 1

2
ν(∇u+∇uT)2.

Therefore, we can have the following identity:
∫

ω

αu2 +
1

2
ν(∇u + ∇uT)2 =

∫

γ

(T n) · u.

LEMMA 3 (Uniqueness). Boundary value problem equation (35) has unique solution,
both for Ω bounded or unbounded.

In the rest of this section, we use subscripts e and i refer to the limits from the interior
and exterior of an interface, ue and ui denote velocities, while τ e and τ i denote tractions.
From the results of stokes equation, we know that

1. with φ as single layer density on boundary γ,

ui − ue = 0 τ i = (
1

2
−DT)φ τ e = (−

1

2
−DT)φ

2. with µ as double layer density on boundary γ,

ui = (
1

2
+ D)µ ue = (

1

2
+ D)µ τ i − τ e = 0

The following three propositions are about the null space of the double layer potential
operators D. We use N(·) to denote the null space of an operator and R(·) to denote the
range.

PROPOSITION 1 (Bounded domain). dimN(− 1

2
+D) = 1. For any ξ ∈ N(− 1

2
+D),

the dot product (ξ,n) does not vanish.
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Proof. First, we prove that dimN(− 1

2
+D) ≥ 1. Choose any double layer density µ,

then u = (− 1

2
+ D)µ is a solution of modified stokes equation, therefore for (n, (− 1

2
+

D)µ) = 0 by divergence theorem. Then (− 1

2
+DT)n = 0 which says dimN(− 1

2
+DT) ≥

1. From that, we conclude dimN(− 1

2
+ D) ≥ 1 by the Fredholm alternative.

Next, we prove dimN(− 1

2
+ D) ≤ 1. Suppose there is a µ with (− 1

2
+ DT)µ = 0.

Viewing µ as a single layer density, the traction τ e vanishes. Hence (ue, τ e) = 0. By
energy identity, we know ui can only be zero due to the decay of the solution at infinity.
From ue = ui for single layer density, we know that ui = 0 This in turns gives interior
pressure limit pi is a constant c. Therefore τ i = cn and µ = τ i − τ e = cn. This is just
dimN(− 1

2
+ DT) ≤ 1. Therefore, dimN(− 1

2
+ D) ≤ 1 by the Fredholm alternative

Finally we prove that (ξ,n) 6= 0. Suppose n ∈ R(− 1

2
+ DT). Then there is a density

µ such that ( 1

2
−DT)µ = n With µ as single layer density, the corresponding traction τ e

is just n. Therefore (ue, τ e) = 0. Due to the energy identity again, it follows that ue = 0
and τ e = 0; therefore, ( 1

2
−DT)µ = 0, which is a contradiction. Therefore, n cannot be

in the range R(− 1

2
+ DT) and has a component in N(− 1

2
+ D) since R(− 1

2
+ DT)⊥ =

N(− 1

2
+ D).

PROPOSITION 2 (Unbounded domain). dimN(− 1

2
+ D) = 0

Proof. Suppose (− 1

2
+ DT)µ = 0. With µ as a single layer density, the traction τ e is

zero. Now (ue, τ e) = 0. Since the domain now is unbounded, the only solution possible
is ue = 0.Since µ is a single layer, then ui = 0 as well. This gives τ i = 0 because
the fluid domain is now unbounded and τ i needs to approach 0 at infinity. It follows that
µ = τ i − τ e = 0 and dimN(− 1

2
+ DT) = 0 and dimN(− 1

2
+ D) = 0.

PROPOSITION 3 (Multiply connected domain). Suppose the boundary γ consists of a
set of curves {γ0, γ1, · · · , γM}, where γ0 is the outer boundary, then dimN(− 1

2
+D) = 1.

Proof. First, we prove that dimN(− 1

2
+ D) ≥ 1. From proposition 1, we know that

there exists a double layer which gives zero velocity in the region bounded by γ0. We
define ξ0 to be the same as this solution on γ0 and to be zero on γi, 1 ≤ i ≤ M . Clearly
ξ0 is in the null space of 1

2
+ D. Therefore dimN(− 1

2
+ D) ≥ 1.

Next, we prove that dimN(− 1

2
+ D) ≤ 1. The proof proceeds exactly in the same

way as for the bounded domain: Suppose (− 1

2
+ DT)µ = 0. Then with µ as single layer

density, the traction τ e vanishes, and ui = ue = 0 on γ0, · · · , γM . Then the interior
limit of pressure pi is again an constant c. Therefore τ i = cn and µ = τ e − τ i =
−cn, this means dimN(− 1

2
+ DT) ≤ 1. Using Fredholm alternative, we have again

dimN(− 1

2
+ D) ≤ 1.

Remark 1. Suppose n0 is the function which has the same value as n on γ0 and van-
ishes on γi, 1 ≤ i ≤ M . Suppose ( 1

2
− DT)µ = n0 then τ e = n0. Since ue is single

layer, (ue,n0) = 0. Therefore (ue, τ e)γ0
= 0 and both ue and τ e vanish on γ0. Then

( 1

2
− DT)µ = 0 and n0 6∈ R( 1

2
+ DT). So n0 has a component in N(− 1

2
+ D) and

(n0, ξ0) 6= 0.

Full-rank operators for bounded domains. From Proposition 1, we know the follow-
ing facts: nT(− 1

2
+ D) = 0 and (− 1

2
+ D)ξ = 0. Therefore, the Jordan block of eigen-

value 0 has size 1 and (n, ξ) 6= 0. Therefore, by using Wielandt’s deflation, we construct
an equivalent operator of full rank

u = (−
1

2
+ D + nnT)µ.
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Full-rank operators for multiply connected domains. By Proposition 3, the Jordan
block of eigenvalue 0 is of size 1. We know that nT(− 1

2
+ D) = 0 and (− 1

2
+ D)ξ0 = 0.

Since (n, ξ0) = (n0, ξ0) 6= 0, the equivalent full-rank operator is

u = (−
1

2
+ D + n0n

T)µ or u = (−
1

2
+ D + nnT)µ
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