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Abstract

In this article, we present a parallel algorithm for intensity-based elastic image registration.
This algorithm integrates several components: parallel octrees, multigrid preconditioning, a
Gauss-Newton-Krylov solver, and grid continuation. We use a non-parametric deformation
model based on trilinear finite element shape functions defined on octree meshes. Our C++
based implementation uses the Message Passing Interface (MPI) standard and is built on top of
the Dendro and PETSc libraries. We demonstrate the performance of our method on synthetic
and medical images. We demonstrate the scalability of our implementation on up to 4096
processors on the Sun Constellation Linux Cluster “Ranger” at the Texas Advanced Computing
Center (TACC).

1 Introduction

Given two images, S(x) and T (x), “registration” is the process of finding a displacement field, u(x),
such that T (x + u(x)) is “similar” to S(x) in some metric; S(x) is referred to as the fixed image
and T (x) is referred to as the moving image. Image registration has the following applications:

• Integrating complementary information contained in images of the same subject obtained
using different modalities.

• Aligning temporal sequences of images to compensate for motion of the subject.

• Image guidance during surgery.

• Aligning images from multiple subjects in statistical studies.

• Comparing images taken at different stages of progression of a disease such as in tumor
growth.

Overview and challenges. Given a metric, D(·, ·), for measuring the dissimilarity between any
given pair of images, the image registration problem can be viewed as a non-convex optimization
problem:

min
u
D(S, T (u)) (1.1)
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In this work, we use the L2 norm as the similarity metric1:

D(S, T (u)) =

∫
[S − T (u)]2 dx (1.2)

Other similarity metrics such as correlation coefficient, correlation ratio and mutual information
have also been used in the literature [15, 48]. The choice of the similarity metric mainly depends on
whether or not the same imaging modality2 was used to acquire both the fixed and moving images.
Since we focus on registering images acquired using the same modality, L2 is appropriate here. The
main assumption (and limitation in the SSD metric) here is that similar structures share similar
greyscale values.

Minimizing Equation 1.2 is an ill-posed and non-convex problem. So, we need to impose a
regularization that constrains the displacement field. The choice of regularization is an important
feature that can be used to distinguish between different registration algorithms. In this work, we
will use the elastic deformation energy as the regularization and hence this procedure is known
as “elastic registration”. This choice is motivated by the fact that many biological materials that
are imaged are elastic. The deformation energy used in this work is based on the linear theory of
elasticity. The mathematical statement of the elastic registration problem is given below:

min
u
J (u) =

1

2

∫
[S − T (u)]2 dx+

γ

2
a(u, u)

a(u, v) = −
∫
v · (∆u+ (λ+ 1)∇div u) dx (1.3)

a(u, u) represents the elastic potential energy due to the deformation and λ is the Lamé parameter.
The regularization parameter, γ, controls the trade-off between the two competing terms in the
objective function: (a) dissimilarity between the fixed and deformed moving images and (b) the
associated deformation energy. The optimality condition for the regularized problem is given by
Equation 1.4:

g(u) · v = γ a(u, v)−
∫

(S − T (u))∇T (u) · v dx = 0 ∀v (1.4)

g(u) represents the gradient of the objective function, J (u). This is the weak form of a nonlinear
coupled partial differential equation (PDE). We need to specify appropriate boundary conditions
to solve this equation; we chose to enforce homogeneous Dirichlet boundary conditions. We assume
that a rigid registration is performed prior to the elastic registration. This means that there is no
relative displacement between the frames for the fixed and moving images for the elastic registration
and hence homogeneous Dirichlet boundary conditions are appropriate here.

We use a Gauss-Newton algorithm to solve Equation 1.3. Such an approach requires the re-
peated numerical solution of large linear systems of equations. To reduce the computation time,
we considered a combination of various techniques. To reduce the amount of processed data we
needed a non-uniform discretization scheme. Such a discretization scheme would also be useful for
further extensions of the work that will include adaptive mesh refinement proceedures. Since we

1This is also called the sum of squared differences (SSD) similarity metric.
2Modality refers to the technique used to acquire the images. Some popular modalities include ultrasound,

magnetic resonance imaging and computed tomography.
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are dealing with images, it was natural to use octree-based discretizations instead of generic un-
structured discretizations. Due to the sheer size of the problem and storage limitations we needed
to consider matrix-free schemes and parallel implementations. We considered iterative solvers since
direct solvers do not work with matrix-free schemes and moreover they do not scale well. The
convergence rates of most iterative solvers deteriorate with the condition number of the matrix to
be inverted. The matrices that need to be inverted to solve the registration problem suffer from
ill-conditioning and so it is important to address this problem. Multigrid methods are known to be
robust for such ill-conditioned systems but the typical multigrid methods for adaptive discretiza-
tions are of the algebraic type, which do not work with matrix-free schemes and have high setup
costs rendering them unsuitable for large scale adaptive mesh refinement proceedures. Recently,
we developed a parallel, matrix-free, geometric multigrid solver for finite element computations on
octree meshes [51, 52] and demonstrated its scalability on over 32000 processors. In this work, we
used this algorithm to solve the linear system formed in each Gauss-Newton iteration.

Contributions. The main contributions of this work are summarized below:

• We use parallel octree discretizations to reduce the computation time for the registration
problem. This implementation will also allow us to register high resolution images that are
too large to fit on a single processor.

• We use a multigrid algorithm to solve the linear system that arises in each optimization
iteration. In particular, we use a matrix-free geometric multigrid algorithm, which has lower
setup costs compared to its algebraic counterpart. This is significant because we need to
setup the linear system of equations for the multigrid scheme in every optimization iteration.

Limitations. There are a few limitations in the proposed framework:

• The linear theory of elasticity is only valid for small deformations. Other regularization
approaches may be more appropriate for large deformations.

• We do not incorporate any biophysical information to additionally constrain the deformation.
It has been suggested that incorporating such information will provide intelligent priors and
reduce the ill-posedness of the registration problem [56].

• We do not use adaptive integration in our present implementation. Instead, we fix the order
of the Gauss quadrature rule for integration a-priori. The use of adaptive integration can
further reduce the computation costs for evaluating the objective function and gradient.

Related work. Image registration has been an active research area for the past two decades.
[25, 67, 45] give a comprehensive review of image registration methods. [32, 41, 42] focus on
registration techniques commonly used in medical image processing.

Many of the early works on registration focussed on rigid or affine transformations in which
u is restricted to be a rigid or affine displacement field. More complex deformation models used
in the literature include polynomial models [23, 24], radial basis functions [21, 22], B-splines [5,
39, 40, 54], Thin-plate splines [10, 49] and elastic splines [16, 65]. These registration methods
regularize the problem by discretization (i.e., by parameterizing the displacement field) and so
cannot allow fine discretizations (too many parameters). Having few degrees of freedom makes
these parametric registration methods computationally efficient but it restricts their ability to
handle local deformations well. In contrast, the number of degrees of freedom in non-parametric
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registration methods is comparable to the number of pixels in the images. This give these methods
the flexibility needed to handle local deformations, but they need to be regularized explicitly by
adding a penalty term to the objective function. Different choices for regularization give rise to
different registration algorithms: diffusive registration [19], elastic registration [4, 31, 33, 63], fluid
registration [12, 64] and curvature registration [20]. There are also examples of hybrid approaches
that combine parametric and non-parametric registration methods: [53] used elastic registration
on affine registered images to improve the accuracy of reconstruction.

Multigrid methods for solving elliptic PDEs have been researched extensively in the past
[6, 11, 17, 30, 66] and remain an active research area [1, 2, 7, 8, 26]. The use of multigrid for
image registration is fairly recent and some of the relevant works include [14, 29, 31, 33]. [14]
used a diffusive regularizer and a steepest-descent type optimization algorithm accelerated using a
multigrid solver. [31] used a Full Approximation Scheme (FAS) and d-linear image approximation
for elastic registration. [33] presented a multigrid scheme using operator dependent prolongation
for elastic image registration. [29] presented a Gauss-Newton algorithm and a multigrid scheme for
solving the elastic registration problem using a regular grid discretization.

The use of octrees/quadtrees for image registration is also a fairly recent idea [27, 28, 38, 59, 60].
[27] presented a parametric registration algorithm using octree discretization and [28] used octrees
for elastic image registration. [38] used quadtrees for affine image registration. [59] and [60] used
a family of volumetric tensor product first order (linear) B-splines whose coefficients were defined
on an octree and quadtree grid to model the transformation for the registration problem.

There is little work on parallel image registration. [18, 46, 62] focussed on rigid registration using
derivative-free optimization algorithms. A steepest-descent approach was used in [35] for parallel
rigid registration of 2-D images to 3-D volumes. A parallel non-rigid registration algorithm using a
B-spline transformation model was presented in [36]. [55] parallelized the 3-D demon’s registration
algorithm. [9] used a fixed point iteration combined with parallel FFTs to solve the 2-D elastic
registration problem. [43, 44] also used a fixed point iteration to solve the 2-D elastic registration
problem and used a parallel Conjugate Gradient (CG) method to solve the linear system within
the nonlinear iteration. [37] presented a parallel multigrid scheme to solve the 3-D optical flow
problem.

Organization of the paper. The rest of this article is organized as follows. We describe the
octree discretization and image interpolation schemes in Sections 2 and 3, respectively. Section
4 describes the linear and nonlinear solvers used to solve the optimization problem. Finally, in
Section 5 we present the results from using the proposed algorithm for registering synthetic as well
as medical images.

2 Octree discretization

We begin by defining some terms that will be used later in this section. An “octree” is a tree data
structure that is used for spatial decomposition (Figure 1). The elements of an octree are known
as “octants”. Every octant has a maximum of eight “children”. An octant with no children is
called a “leaf” and an octant with one or more children is called an “interior octant”. “Complete”
octrees are octrees in which every interior octant has exactly eight children. The only octant with
no parent is the “root” and all other octants have exactly one parent. Octants that have the same
parent are called “siblings”. The depth of an octant from the root is referred to as its “level”. We
use a “linear” octree representation (i.e., we exclude interior octants) using the “Morton encoding”
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Figure 1: For simplicity, we use quadtrees to illustrate the concepts; quadtrees are 2-D analogues
of octrees. (a) Tree representation of a quadtree and (b) decomposition of a square domain using
the quadtree, superimposed over a uniform grid. The leaves are labeled in the Morton ordering.
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Figure 2: (a) A regular grid image and (b) the linear octree constructed by coarsening the regular
grid image.

scheme [13]. We use “2:1 balanced octrees” in this work; these are octrees in which there is no more
than one octree-level difference between octants that share a face, edge, or vertex.

Next, we describe how we construct the parallel octree discretization from the high resolution
fixed and moving images discretized on an uniform grid. We assume that the number of elements in
each dimension of the uniform grid is a power of 2. Note that we only use the octree discretization
for the displacements; we continue to use the original uniform grid representation for the given
images. To make the distinction between the two discretizations clear, we use the term “octants”
to refer to elements in the octree discretization and the term “voxels” to refer to elements in the
original regular grid discretization.

We first construct two parallel complete linear octrees; one for the fixed image and another for
the moving image. The uniform grids for the input images can be viewed as octrees in which all
the octants are at the same octree-level. We coarsen these octrees by replacing every set of eight
siblings by their parent as long as the maximum difference between the image values of the siblings
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is less than an user-specified threshold (δ). After coarsening, we set the image value of the parent
to be the average of the values of its children and repeat the process until further coarsening is not
possible. This is illustrated in Figure 2. Next, we merge the two octrees and linearize the result
using the algorithm described in [58].3 We then use the algorithm described in [58] and construct a
2:1 balanced octree. We construct an octree mesh from the 2:1 balanced octree using the algorithm
described in [57]. We discretize the optimization problem given in Equation 1.3 using trilinear finite
elements on this octree mesh. A characteristic feature of such octree meshes is that they contain
“hanging” vertices; these are vertices of octants that coincide with the centers of faces or mid-points
of edges of other octants. The vertices of the former type are called “face-hanging” vertices and
those of the latter type are called “edge-hanging” vertices. The 2:1 balance constraint ensures that
there is at most one hanging vertex on any edge or face. The hanging vertices do not represent
independent degrees of freedom in a FEM solution. We discussed a way to tackle these hanging
vertices and build conforming finite element spaces in [52, 51, 57]; we follow the same approach in
this work too.

3 Interpolation

In this section, we describe how we construct continuous approximations to the images that can
be used to evaluate their intensity values at arbitrary locations within the domain. Such evalua-
tions are necessary for computing the integrals in Equation 1.3 and Equation 1.4 numerically. We
use a gradient-based optimization algorithm and to compute the gradient, g(u), (Equation 1.4)
we need derivatives of the approximation of the moving image, T (x). Although computationally
efficient, piecewise trilinear image approximations are not suitable for our purposes because they
are not continuously differentiable and we require image derivatives. For this reason, we use piece-
wise tricubic Hermite polynomials. Since the Hermite polynomial approximations interpolate the
function and its derivatives, we need both T and ∇T to construct the image approximations. To
compute ∇T , we use the second-order accurate central difference scheme. Once we have ∇T , then
the approximations to the images within each voxel are given by Equation 3.1.

T (x, y, z) =

1∑
i,j,k=0

1∑
l,m,n=0
l+m+n≤1

T̂ lmnijk N lmn
ijk (ξ, η, ζ)

T̂ lmnijk =

(
h

2

)l+m+n ∂(l+m+n)T

∂xl∂ym∂zn
x=x0+ih
y=y0+jh
z=z0+kh

ξ = −1 +
2(x− x0)

h
; η = −1 +

2(y − y0)

h
; ζ = −1 +

2(z − z0)

h
(x, y, z) ∈ [x0, x0 + h)× [y0, y0 + h)× [z0, z0 + h) (3.1)

where, N lmn
ijk is given by Equation 3.2 and P li is given by Equation 3.3. For each pair (i, l),

exactly one of P li (−1), P li (1),
dP l

i (−1)
dξ and

dP l
i (1)
dξ is 1 and the rest are 0.

3Our implementation is capable of simultaneously registering multimodal images. For simplicity, we only explain
the monomodal case. For the multimodal case, an octree is constructed for each modality and all the octrees are
merged in the end.
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(a) (b)

Ghost Layer

(c)

Figure 3: Illustration of image partition: (a) An octree distributed on 3 processors, (b) the input
image aligned with the octree and (c) the part of the input image owned by the first processor. In
this example, the ghost layer received from other processors is 2 voxels thick.

N lmn
ijk (ξ, η, ζ) = P li (ξ)P

m
j (η)Pnk (ζ)

i, j, k, l,m, n ∈ {0, 1} ; l +m+ n ≤ 1 (3.2)

P 0
0 (ξ) =

2− 3ξ + ξ3

4
; P 1

0 (ξ) =
1− ξ − ξ2 + ξ3

4

P 0
1 (ξ) =

2 + 3ξ − ξ3

4
; P 1

1 (ξ) =
−1− ξ + ξ2 + ξ3

4
(3.3)

3.1 Image partition

In our parallel implementation, we partition the images across the processors. The displacements
computed during the solve may be such that some processors may need to access portions of the
images owned by other processors in order to perform interpolation. To reduce the communication
costs associated with this operation we impose the partition for the finest octree onto the images as
well; hence, the portion of the images owned by each processor is aligned with the part of the finest
octree owned by that processor. We then expand this initial partition of the images to include a
layer of image voxels that is owned by other processors; the thickness of this layer is a few voxels
and it is a parameter that can be controlled. This is illustrated in Figure 3. For the case of
small deformations, most of the points, where the images and their gradients need to be evaluated,
generated by each processor will lie within the portion of the images owned by that processor.
We communicate the remaining points to the processors that own the respective image voxels, the
receiving processor will evaluate the image and gradients at these points and communicate the
results back to the processor that generated these points.
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4 Solvers

In this section, we describe three techniques used to accelerate the solution of the elastic registration
problem. First, we describe a Gauss-Newton method that generates good search directions for the
optimization and succeeds in keeping the number of optimization iterations small. Second, we
describe a multigrid scheme to efficiently solve the linear system of equations that arise in each
optimization iteration. Third, we describe a grid continuation scheme that solves a sequence of
optimization problems on increasingly finer grids to reduce the overall computational cost and to
improve the convergence of the algorithm.

4.1 Gauss-Newton approximation

In this section, we describe how we solve Equation 1.4 using a Newton-type method. In the
Newton’s algorithm for optimization problems, the search directions, p, are generated by inverting
the Hessian, H, in Equation 4.1:

H(un−1)pn−1 = −g(un−1)

un = un−1 + αn−1pn−1 (4.1)

where, αn−1 satisifies the Armijo backtracking condition [47].

w ·H(u)p = γ a(w, p) +

∫
w ·
[
∇T (u)⊗∇T (u)− (S − T (u))∇2T (u)

]
p dx ∀p, w (4.2)

The true Hessian for the registration problem, given by Equation 4.2, can be indefinite when
γ = 0 due to the ∇2T (u) term and so the Newton step might not be a descent direction. Moreover,
second derivatives of the image are unreliable for non-smooth images. Instead, we use a Gauss-
Newton approximation (Equation 4.3), which is positive definite. This approximation is derived by
dropping the ∇2T (u) term in Equation 4.2.

w ·H(u)p = γ a(w, p) +

∫
w · (∇T (u)⊗∇T (u)) p dx ∀p, w (4.3)

The discretized Hessian requires computation of the integrals in Equation 4.3. The a(w, p) term
is computed exactly using precomputed stencils. We use numerical integration to approximate the
integral involving the ∇T (u)⊗∇T (u) term. For this numerical integration, we used an integration
rule in which the points of integrand evaluation coincided with the mesh points. Thus, the ∇T (u)⊗
∇T (u) part of the Hessian matrix4 has a block diagonal form. It is cheaper to construct the matrix
or apply the Matvec for this block diagonal approximation to the Hessian as compared to using
a Hessian built using a more accurate integration rule with more points of integrand evaluation
within each element.

4In our implementation, we do not build the Hessian matrix explicitly; instead, we implement a Hessian Matvec,
i.e. a function that accepts a vector as input and returns the product of the Hessian matrix and the vector as the
output.
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Algorithm 1 Gauss-Newton Algorithm

Repeat until convergence:

1. Given u, use interpolation to compute T (u) and ∇T (u).

2. Evaluate the objective function and the gradient of the objective function.

3. Compute the Newton step, p, in Equation 4.2 using the multigrid solver.

4. Use line search to scale the step:

• Let w be the Newton step.

• Set α = 1

• While J(u+ αw) > (J(u) + c1α∇J(u)Tw)

– set α = c2α. (c2 ∈ (0, 1))

A trust region approach could be used instead of line search.

5. Update u as shown in Equation 4.2.

6. Declare convergence if one of the following holds:

• The step-length is smaller than a given tolerance, which is typically some

fraction of the voxel size.

• Reduction in gradient is sufficient.

4.2 Multigrid preconditioner

The Gauss-Newton Hessian, described in the previous section, can be highly ill-conditioned. We
tackle the problem of ill-conditioning using the multigrid method, which is known to be robust for ill-
conditioned systems. We solve Equation 4.1 using a Conjugate Gradient algorithm preconditioned
using one multigrid V-cycle. We use a 3× 3 block-Jacobi smoother at each level in the V-cycle and
use a direct solver (LU) at the coarsest grid. We use the restriction and prolongation operators
described in [51, 52]. To form the coarse grid operator, we first transfer the values of ∇T (u) from
the fine grid vertices to the coarse grid vertices by injection. Note that we restrict ∇T (u) and not
T (u). We then assemble the coarse grid operators by using the coarse grid discretization for the
elasticity part and nodal integration for the image part as decribed in the previous section.

4.3 Grid continuation

We use a multiscale optimization algorithm to reduce the overall computational cost and to improve
the convergence of the algorithm. This idea has been used in other works as well [3, 29, 31]. In this
approach, we solve a sequence of optimization problems on increasingly finer grids. The solution
of each optimization problem is used as an initial guess for the subsequent optimization on the
next finer level. The coarser grid iterations are cheaper than the fine grid iterations and they help
escape local minima by aligning the coarse-level details. We also use the initial guess to construct
an octree corresponding to the deformed moving image instead of the original moving image. The
multiscale optimization algorithm is listed in Algorithm 2.
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Algorithm 2 Grid Continuation

1. Construct a sequence of coarse images from the given image by averaging.

2. Solve the optimization problem on the coarsest grid using zero guess.

3. Interpolate the solution to the next finer grid and use it as an initial guess for

the optimization problem on that grid.

4. Repeat the last step until the finest grid is reached.

5 Results

In this section, we present the results from using the multiscale Gauss-Newton algorithm to register
synthetic as well as medical images. We performed four sets of experiments:

• We tested the performance of the algorithm on two synthetic examples.

• We tested the performance of the algorithm on medical MR images of brains.

• We tested the effect of the thresholding parameter (δ) on the registration accuracy and the
corresponding reduction in problem size. This parameter controls the number of elements
in the octree; For a given image, using higher values of δ would result in coarser octrees
compared to those constructed using lower values of δ.

• We tested the fixed-size and isogranular scalability of our MPI-based implementation of the
proposed algorithms on the Sun Constellation Linux Cluster “Ranger” at the Texas Advanced
Computing Center (TACC).

The Newton iterations in all these experiments were terminated when the maximum step length
was less than 0.1× h, where h is the regular grid spacing. In these experiments, we measured the
performance of registration for different regularization parameters (γ) using the following metrics:
(A) the reduction in absolute value of the mismatch between the registered and fixed images, (B)
the number of optimization iterations, (C) the relative reductions in objective function, and (D)
the relative reduction in the 2-norm of the gradient. We also computed the determinants of the
Jacobians of the recovered deformations at a small number (7) of points within each element and
report the maximum and minimum values across all elements; values closer to 1 indicate small de-
formations, values greater than 1 indicate expansion, values lesser than 1 indicate compression and
negative values indicate non-physical deformations such as those involving intersecting or flipped
elements.

5.1 Synthetic examples

We first present two synthetic example problems of resolution 256 × 256 × 256 in Figures 4 and
7. In the former example, the moving image was chosen to be 255 sin2(2πx) sin2(2πy) sin2(2πz)
and the fixed image was generated by applying 3 successive synthetic diffeomorphic displacement
field to this image. We found the maximum and minimum values for the determinants of the
Jacobians of the first deformation to be 1.12 and 0.84, respectively; the corresponding values for
the second deformation were 1.28 and 0.64, respectively and the corresponding values for the third
deformation were 1.70 and 0.08, respectively. In the latter example, the moving image is a sphere
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Table 1: Performance of the optimizer for the synthetic images shown in Figure 4. J is the objective
function and g is the 2-norm of the gradient. γ is the regularization parameter. Approximately 104

elements were used in the finest grid. The Newton iterations were terminated when the maximum
step-length was less than 0.1× h, where h is the regular grid spacing for that level. The maximum
and minimum values of the determinants of the Jacobian of the recovered deformation for γ =
102 was found to be 1.89 and -0.14, respectively. The maximum and minimum values of the
determinants of the Jacobian of the recovered deformation for γ = 103 was found to be 1.56 and
0.35, respectively. The maximum and minimum values of the determinants of the Jacobian of the
recovered deformation for γ = 104 was found to be 1.21 and 0.85, respectively.
γ Level 1 Level 2 Level 3 Level 4 Level 5

(Coarsest) (Finest)

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

102 16 0.07 0.06 8 0.67 0.03 12 0.92 0.01 15 0.98 0.01 9 0.99 0.01
103 4 0.30 0.07 3 0.92 0.04 2 0.99 0.18 3 0.99 0.06 3 0.99 0.05
104 2 0.78 0.14 2 0.98 0.03 2 0.99 0.05 2 0.99 0.04 2 0.99 0.04

and the fixed image is a partial torus. In the figures, we only show a few selected slices in which the
differences between the fixed and moving images are easily noticeable. We report the results from
solving these registration problems using different regularization parameters in Figures 5 and 8,
respectively. We show the corresponding recovered deformations for these two examples in Figures
6 and 9, respectively. We also report the corresponding number of Gauss-Newton iterations and
relative reductions in objective function and gradient for each level of the multiscale algorithm in
Tables 1 and 2, respectively.

5.2 Medical imaging examples

Next, we tested the performance of the algorithm on medical MR images of resolution 256×256×256.
Figure 10 shows a few z-plane crosssection of the fixed, moving and registered MR images of the
brain of the same subject taken at different times. We show the result of registration for different
choices of the regularization parameter in Figure 11. The corresponding number of Gauss-Newton
iterations and relative reductions in objective function and gradient for each level of the multiscale
algorithm is reported in Table 3. Another medical imaging example is shown in Figure 12; this
is an example of inter-subject registration. The mismatch between the fixed and moving images
before and after registration is shown in Figure 13. This experiment was repeated for different
registration parameters and for each case the respective performance metrics like the number of
optimization iterations and relative reductions in objective function and gradient are reported in
Table 4. We also computed the determinants of the Jacobians of the deformation at the centers of
each voxel and this is shown in Figure 14.

5.3 Effect of the thresholding parameter

In Figure 15, we show the effect of the thresholding parameter, δ, on the registration accuracy for
the example shown in Figure 12. We also report the relative reduction in mismatch between the
registered and fixed images and the corresponding number of octants in the finest octree in Table
5. The thresholding parameter has little effect on the registration accuracy but has a significant
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(a) Fixed (Slice A) (b) Moving (c) Registered

(d) Fixed (Slice B) (e) Moving (f) Registered

(g) Fixed (Slice C) (h) Moving (i) Registered

Figure 4: First synthetic example. The moving image was chosen to be
255 sin2(2πx) sin2(2πy) sin2(2πz) and the fixed image was generated by applying 3 succes-
sive synthetic diffeomorphic displacement field to this image. The resolution of each image was
256 × 256 × 256. Each row shows a z-plane crosssection of the fixed, moving and corresponding
registered (deformed moving) images using the regularization parameter: γ = 1000.
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(a) Initial Mismatch (b) Final (γ = 102) (c) Final (γ = 103) (d) Final (γ = 104)

(e) Initial Mismatch (f) Final (γ = 102) (g) Final (γ = 103) (h) Final (γ = 104)

(i) Initial Mismatch (j) Final (γ = 102) (k) Final (γ = 103) (l) Final (γ = 104)

Figure 5: Results from using the proposed methology on the images shown in Figure 4. Each row
shows a z-plane crosssection of the initial mismatch between the fixed and moving images and the
final mismatch between the registered and fixed images for different regularization parameters (γ).

Table 2: Performance of the optimizer for the synthetic images shown in Figure 7. J is the objective
function and g is the 2-norm of the gradient. γ is the regularization parameter. Approximately
2.9 × 105 elements were used in the finest grid. The Newton iterations were terminated when
the maximum step-length was less than 0.1 × h, where h is the regular grid spacing for that level
or after 30 iterations. The maximum and minimum values of the determinants of the Jacobian
of the recovered deformation for γ = 103 was found to be 84.82 and -11.94, respectively. The
maximum and minimum values of the determinants of the Jacobian of the recovered deformation
for γ = 104 was found to be 3.33 and -0.42, respectively. The maximum and minimum values of
the determinants of the Jacobian of the recovered deformation for γ = 105 was found to be 1.07
and 0.97, respectively.
γ Level 1 Level 2 Level 3 Level 4 Level 5

(Coarsest) (Finest)

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

103 17 0.21 0.06 30 0.55 0.12 21 0.81 0.16 30 0.88 0.18 30 0.91 0.19
104 5 0.75 0.17 8 0.93 0.08 11 0.97 0.09 30 0.98 0.06 30 0.99 0.16
105 2 0.97 0.15 1 0.99 - 2 0.99 0.09 2 0.99 0.07 2 0.99 0.07
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(a) Slice A (b) Slice B

(c) Slice C

Figure 6: The z-plane crosssection of the reconstructed deformation for the example shown in
Figure 4 using γ = 100.

Table 3: Performance of the optimizer for the MR images shown in Figure 10. J is the objective
function and g is the 2-norm of the gradient. γ is the regularization parameter. Approximately
1.28× 106 elements were used in the finest grid. The Newton iterations were terminated when the
maximum step-length was less than 0.1× h, where h is the regular grid spacing for that level. The
maximum and minimum values of the determinants of the Jacobian of the recovered deformation
for γ = 200 was found to be 2.79 and 0.087, respectively. The maximum and minimum values of
the determinants of the Jacobian of the recovered deformation for γ = 500 was found to be 1.65
and 0.49, respectively. The maximum and minimum values of the determinants of the Jacobian of
the recovered deformation for γ = 1000 was found to be 1.35 and 0.67, respectively.
γ Level 1 Level 2 Level 3 Level 4 Level 5

(Coarsest) (Finest)
Its. J

J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

200 4 0.67 0.34 11 0.69 0.16 11 0.77 13.1 11 0.89 1.6e-2 12 0.97 8.9e-3
500 6 0.73 0.29 4 0.82 0.36 4 0.85 0.195 4 0.94 0.055 4 0.98 0.038
1000 3 0.78 0.21 4 0.87 0.16 4 0.92 0.106 27 0.97 3.1e-3 15 0.99 6.3e-3
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(a) Fixed (Slice A) (b) Moving (c) Registered (γ = 103) (d) Registered (γ = 104)

(e) Fixed (Slice B) (f) Moving (g) Registered (γ = 103) (h) Registered (γ = 104)

(i) Fixed (Slice C) (j) Moving (k) Registered (γ = 103) (l) Registered (γ = 104)

(m) Fixed (Slice D) (n) Moving (o) Registered (γ = 103) (p) Registered (γ = 104)

(q) Fixed (Slice E) (r) Moving (s) Registered (γ = 103) (t) Registered (γ = 104)

Figure 7: Second synthetic example. The moving image is a sphere and the fixed image is a partial
torus. The resolution of each image was 256 × 256 × 256. Each row shows a z-plane crosssection
of the fixed, moving and corresponding registered (deformed moving) images for the regularization
parameters: γ = 103 and γ = 104.
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(a) Initial Mismatch (b) Final (γ = 103) (c) Final (γ = 104)

(d) Initial Mismatch (e) Final (γ = 103) (f) Final (γ = 104)

(g) Initial Mismatch (h) Final (γ = 103) (i) Final (γ = 104)

(j) Initial Mismatch (k) Final (γ = 103) (l) Final (γ = 104)

(m) Initial Mismatch (n) Final (γ = 103) (o) Final (γ = 104)

Figure 8: Results from using the proposed methology on the images shown in Figure 7. Each row
shows a z-plane crosssection of the initial mismatch between the fixed and moving images and the
final mismatch between the registered and fixed images for different regularization parameters (γ).

16



(a) Slice A (b) Slice B

(c) Slice C (d) Slice D

(e) Slice E

Figure 9: The z-plane crosssection of the reconstructed deformation for the example shown in
Figure 7 using γ = 1000.
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(a) Fixed (Slice A) (b) Moving (c) Registered

(d) Fixed (Slice B) (e) Moving (f) Registered

(g) Fixed (Slice C) (h) Moving (i) Registered

(j) Fixed (Slice D) (k) Moving (l) Registered

(m) Fixed (Slice E) (n) Moving (o) Registered

Figure 10: Skull stripped MR images of the brain of the same subject taken at different times
and the corresponding registered (deformed moving) image for γ = 200. Each row shows a z-plane
crosssection of the fixed, moving and registered images.
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(a) Initial Mismatch (b) Final (γ = 200) (c) Final (γ = 500) (d) Final (γ = 1000)

(e) Initial Mismatch (f) Final (γ = 200) (g) Final (γ = 500) (h) Final (γ = 1000)

(i) Initial Mismatch (j) Final (γ = 200) (k) Final (γ = 500) (l) Final (γ = 1000)

(m) Initial Mismatch (n) Final (γ = 200) (o) Final (γ = 500) (p) Final (γ = 1000)

(q) Initial Mismatch (r) Final (γ = 200) (s) Final (γ = 500) (t) Final (γ = 1000)

Figure 11: Results from using the proposed methology for registering the example shown in Figure
10. Each row shows a z-plane crosssection of the initial mismatch between the fixed and moving
images and the final mismatch between the registered and fixed images for different regularization
parameters (γ).
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(a) Fixed (Slice A) (b) Moving (c) Registered

(d) Fixed (Slice B) (e) Moving (f) Registered

(g) Fixed (Slice C) (h) Moving (i) Registered

(j) Fixed (Slice D) (k) Moving (l) Registered

(m) Fixed (Slice E) (n) Moving (o) Registered

Figure 12: Skull stripped MR images of the brains of two different subjects and the corresponding
registered (deformed moving) image for γ = 3000. Each row shows a z-plane crosssection of the
fixed, moving and registered images.
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(a) Initial Mismatch (b) Final (γ = 1000) (c) Final (γ = 3000) (d) Final (γ = 5000)

(e) Initial Mismatch (f) Final (γ = 1000) (g) Final (γ = 3000) (h) Final (γ = 5000)

(i) Initial Mismatch (j) Final (γ = 1000) (k) Final (γ = 3000) (l) Final (γ = 5000)

(m) Initial Mismatch (n) Final (γ = 1000) (o) Final (γ = 3000) (p) Final (γ = 5000)

(q) Initial Mismatch (r) Final (γ = 1000) (s) Final (γ = 3000) (t) Final (γ = 5000)

Figure 13: Results from using the proposed methology for registering the example shown in Figure
12. Each row shows a z-plane crosssection of the initial mismatch between the fixed and moving
images and the final mismatch between the registered and fixed images for different regularization
parameters (γ).
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(a) Slice A (b) Slice B

(c) Slice C (d) Slice D

(e) Slice E

Figure 14: Determinants of the Jacobians at the centers of voxels for the example shown in Figure
12.
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Table 4: Performance of the optimizer for registering the MR images shown in Figure 12. J is
the objective function and g is the 2-norm of the gradient. γ is the regularization parameter. The
threshold parameter, δ, was set equal to 10 in this experiment. Approximately 1.4× 106 elements
were used in the finest grid. The Newton iterations were terminated when the maximum step-length
was less than 0.1×h, where h is the regular grid spacing for that level. We computed the determinant
of the Jacobians of the deformation at 7 points within each voxel. The maximum and minimum
values of the determinants of the Jacobian of the recovered deformation for γ = 1000 was found
to be 11.15 and -1.34, respectively. The maximum and minimum values of the determinants of the
Jacobian of the recovered deformation for γ = 3000 was found to be 3.83 and 0.53, respectively. The
maximum and minimum values of the determinants of the Jacobian of the recovered deformation
for γ = 5000 was found to be 2.19 and 0.74, respectively.
γ Level 1 Level 2 Level 3 Level 4 Level 5

(Coarsest) (Finest)

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

Its. J
J0

g
g0

1e3 8 0.26 0.06 9 0.69 0.08 20 0.70 0.01 43 0.84 4e-3 14 0.95 6e-3
3e3 3 0.44 0.13 3 0.82 0.20 7 0.84 0.04 24 0.92 0.01 33 0.98 3e-3
5e3 2 0.54 0.25 2 0.86 0.33 9 0.88 0.02 9 0.95 0.01 12 0.98 5e-3

Table 5: Effect of the thresholding parameter (δ) used for octree construction for the example
shown in Figure 12. The regularization parameter, γ, was set equal to 3000 in this experiment. We
report the sum of the square of the mismatch between the fixed and registered images normalized
by the sum of the square of the mismatch between the fixed and moving images. We also report
the number of octants in the finest octree for each case.

δ Relative SSD Number of Elements

0 0.151 1.678× 107

10 0.152 1.37× 106

20 0.152 1.18× 106

30 0.153 9.4× 105

40 0.154 6.7× 105

50 0.155 4.3× 105

effect on the number of octants. This suggests that we can significantly reduce the computation
time without sacrificing registration accuracy.

5.4 Parallel scalability

Finally, we tested the parallel scalability of our implementation on the Sun Constellation Linux
Cluster “Ranger” at the Texas Advanced Computing Center (TACC). We report the results from
the fixed-size scalability and isogranular scalability experiments in Tables 6 and 7, respectively.
In the fixed-size scalability experiment, we track the execution time to solve a fixed problem on
different processor counts. In the isogranular scalability experiment, we track the execution time
while increasing the problem size and the number of processors proportionately.
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(a) δ = 0 (Slice A) (b) δ = 20 (c) δ = 50

(d) δ = 0 (Slice B) (e) δ = 20 (f) δ = 50

(g) δ = 0 (Slice C) (h) δ = 20 (i) δ = 50

(j) δ = 0 (Slice D) (k) δ = 20 (l) δ = 50

(m) δ = 0 (Slice E) (n) δ = 20 (o) δ = 50

Figure 15: Effect of the thresholding parameter (δ) used for octree construction for the example
shown in Figure 12. Each row shows a z-plane crosssection of the registered (deformed moving)
images for γ = 3000. 24



Table 6: Fixed-size scalability for the example shown in Figure 12 using γ = 3000 and δ = 50.
Approximately 4.3 × 105 elements were used in the finest grid. The time spent in evaluating the
objective function is reported in the row labelled “Objective”. The time spent in evaluating the
gradient is reported in the row labelled “Gradient”. Interpolation at the Gauss points were required
to evaluate the objective function and the gradient. Interpolation at nodes were required to build
the approximate Hessian using under-integration. The total time spent in the optimization function
is reported in the row labelled “Gauss-Newton”. The total time spent in the linear solves in each
Newton iteration is reported in the row labelled “KSP solve”. The time spent in the Matvecs for
the elasticity operator is reported in the row labelled “Elas-Matvec”; this is only used to evaluate
the objective and the gradient and not for the Hessian. The time spent in the Hessian Matvecs is
reported in the row labelled “Hess-Matvec”. The time required to update the Hessian is reported
in the row labelled “Update-Hess”; this includes the time spent in interpolations. The time spent
in building the image patches on each processor and gathering the image values from the Petsc
DA ordering to the local ordering is reported in the row labelled “Build Patches”. The time
spent in setting up the multigrid solver is reported in the row labelled “MG-Setup”; this includes
the time spent in coarsening and balancing all the coarser octrees for the multigrid and meshing
for all the multigrid levels. The total runtime is the sum of the times spent in setting up the
Multigrid, building the image patches and the Gauss-Newton iterations. These rows are printed
in boldface. All timings are reported in seconds. This experiment was performed on the Teragrid
system “Ranger” [61].

Processors 16 32 64 128 256

Objective 35.28 153.04 42.68 35.81 16.22

Gradient 28.37 20.12 10.27 8.66 6.85

Interpolation 861.60 606.03 273.44 157.15 83.38
at Gauss points

Interpolation 5.41 3.84 1.68 1.04 0.57
at Nodes

Gauss-Newton 2.37e3 1.65e3 912.70 620.77 474.32

KSP Solve 1.46e3 1.01e3 622.79 443.01 379.48

Elas-Matvec 43.2 62.4 42.17 28.75 16.45

Hess-Matvec 1.30e3 892.8 523.52 345.91 303.73

Update-Hess 654.30 462.77 212.53 126.68 70.31

Build Patches 92.95 92.08 87.02 80.54 78.76

MG-Setup 3.02 3.77 3.53 2.92 5.03
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Table 7: Isogranular scalability for registering synthetic examples. The fixed and moving images
for the first case (N = 64) were down-sampled versions of the images used in Figure 7. The higher
resolution images were generated by repeating the lower resolution images. For example, the images
for the N = 128 case were generated by joining 8 copies of the images for the N = 64 case. We set
γ = 104 for all the cases. For this choice, the maximum and minimum determinants of jacobians of
the deformations for each case was approximately 2.17 and 0.34, respectively. Reducing γ resulted in
deformations with more extreme (maximums were higher and minimums were lower) determinants
of jacobians. The row labelled “N” gives the number of voxels in each dimension of the images and
the corresponding number of octants at the finest octree is reported in the row labelled “Octants”.
The time spent in evaluating the objective function is reported in the row labelled “Objective”.
The time spent in evaluating the gradient is reported in the row labelled “Gradient”. Interpolation
at the Gauss points were required to evaluate the objective function and the gradient. Interpolation
at nodes were required to build the approximate Hessian using under-integration. The total time
spent in the optimization function is reported in the row labelled “Gauss-Newton”. The total time
spent in the linear solves in each Newton iteration is reported in the row labelled “KSP solve”. The
time spent in the Matvecs for the elasticity operator is reported in the row labelled “Elas-Matvec”;
this is only used to evaluate the objective and the gradient and not for the Hessian. The time
spent in the Hessian Matvecs is reported in the row labelled “Hess-Matvec”. The time required
to update the Hessian is reported in the row labelled “Update-Hess”; this includes the time spent
in interpolations. The time spent in building the image patches on each processor and gathering
the image values from the Petsc DA ordering to the local ordering is reported in the row labelled
“Build Patches”. The time spent in setting up the multigrid solver is reported in the row labelled
“MG-Setup”; this includes the time spent in coarsening and balancing all the coarser octrees for the
multigrid and meshing for all the multigrid levels. The total runtime is the sum of the times spent
in setting up the Multigrid, building the image patches and the Gauss-Newton iterations. These
rows are printed in boldface. All timings are reported in seconds. This experiment was performed
on the Teragrid system “Ranger” [61].

Processors 1 8 64 512 4096

N 64 128 256 512 1024

Octants 1.52 ×104 1.2 ×105 9.35 ×105 7.42 ×106 5.95 ×107

Objective 2.23 7.93 17.89 93.05 57.98

Gradient 6.18 12.11 9.51 9.97 5.48

Interpolation 143.34 288.12 274.46 356.45 193.31
at Gauss points

Interpolation 0.981 1.88 1.66 2.17 1.44
at Nodes

Gauss Newton 340.0 896.19 860.51 1075.8 667.53

KSP Solve 187.95 589.68 572.61 699.70 449.63

Elas-Matvec 3.43 7.90 15.80 50.41 29.64

Hess-Matvec 180.56 544.70 513.23 625.68 376.99

Update-Hess 108.78 216.74 205.88 269.62 149.09

Build Patches 4.73 14.22 19.26 31.23 45.59

MG-Setup 0.375 1.07 2.09 10.24 25.64
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6 Summary

We presented a parallel algorithm for solving the elastic image registration problem using octrees.
We used a Gauss-Newton optimization algorithm and solved the linear system that arises in each
optimization iteration using a multigrid preconditioned Conjugate Gradient algorithm. We used
standard restriction and prolongation operators in our multigrid scheme. We also used a multiscale
optimization approach to speed up the computation and to escape local minima. We demonstrated
the performance of the algorithm on synthetic as well as medical images.

References

[1] M. F. Adams, H.H. Bayraktar, T.M. Keaveny, and P. Papadopoulos. Ultrascalable implicit finite element
analyses in solid mechanics with over a half a billion degrees of freedom. In Proceedings of SC2004,
The SCxy Conference series in high performance networking and computing, Pittsburgh, Pennsylvania,
2004. ACM/IEEE.

[2] Mark Adams and James W. Demmel. Parallel multigrid solver for 3D unstructured finite element
problems. In Supercomputing ’99: Proceedings of the 1999 ACM/IEEE conference on Supercomputing,
New York, NY, USA, 1999. ACM Press.

[3] Volkan Akcelik, George Biros, and Omar Ghattas. Parallel multiscale Gauss-Newton-Krylov methods
for inverse wave propagation. In SC ’02: Proceedings of the 2002 IEEE/ACM conference on Supercom-
puting. IEEE, 2002.

[4] Daniel Alexander, James Gee, and Ruzena Bajcsy. Elastic matching of diffusion tensor mris. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 244 – 249,
1999.

[5] Ignacio Arganda-Carreras, Carlos O.S. Sorzano, Roberto Marabini, Jose Maria Carazo, Carlos Ortiz
de Solorzano, and Jan Kybic. Consistent and elastic registration of histological sections using vector-
spline regularization. In Computer Vision Approaches to Medical Image Analysis (CVAMIA), volume
4241 of LNCS, pages 85 – 95, 2006.

[6] Randolph E. Bank and Todd Dupont. An optimal order process for solving finite element equations.
Mathematics of Computation, 36(153):35 – 51, 1981.

[7] R. Becker and M. Braack. Multigrid techniques for finite elements on locally refined meshes. Numerical
Linear Algebra with applications, 7:363 – 379, 2000.

[8] B Bergen, F. Hulsemann, and U. Rude. Is 1.7 × 1010 unknowns the largest finite element system that
can be solved today? In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing,
Washington, DC, USA, 2005. IEEE Computer Society.

[9] Martin Bohme, Rainer Hagenau, Jan Modersitzki, and Bodo Siebert. Non-linear image registration on
PC-clusters using parallel FFT techniques. Technical report, University of Lubeck, 2002.

[10] Fred L. Bookstein. Principal warps: thin plate splines and the decomposition of deformations. IEEE
transactions on pattern analysis and machine intelligence, 11(6):567 – 585, 1989.

[11] D. Braess and W. Hackbusch. A new convergence proof for the multigrid method including the V -cycle.
SIAM Journal on Numerical Analysis, 20(5):967 – 975, 1983.

[12] Morten Bro-Nielsen and Claus Gramkow. Fast fluid registration of medical images. In Visualization in
Biomedical Computing (VBC’96), volume 1131 of LNCS, pages 267 – 276, 1996.

27



[13] Paul M. Campbell, Karen D. Devine, Joseph E. Flaherty, Luis G. Gervasio, and James D. Teresco.
Dynamic octree load balancing using space-filling curves. Technical Report CS-03-01, Williams College
Department of Computer Science, 2003.

[14] U. Clarenz, M. Droske, and M. Rumpf. Towards fast nonrigid registration. In Inverse Problems,
Image Analysis and Medical Imaging, AMS Special Session Interaction of Inverse Problems and Image
Analysis, pages 67 – 84. AMS, 2002.

[15] W.R. Crum, T. Hartkens, and D.L.G. Hill. Non-rigid image registration: theory and practice. The
British Journal of Radiology, 77:S140 – S153, 2004.

[16] Malcolm H. Davis, Alireza Khotanzad, Duane P. Flamig, and Steven E. Harms. Coordinate transforma-
tion in 3d image matching by a physics based method-elastic body splines. In International Symposium
on Computer Vision, pages 218 – 222, 1995.

[17] J. E. Dendy. Black box multigrid. Journal of Computational Physics, 48:366 – 386, 1982.

[18] Tarek A. El-Ghazawi, Prachya Chalermwat, and Jacqueline Le Moigne. Wavelet-based image registra-
tion on parallel computers. In ACM/IEEE SC97 Conference, 1997.

[19] Bernd Fischer and Jan Modersitzki. Fast diffusion registration. In AMS Contemporary Mathematics,
Inverse Problems, Image Analysis, and Medical Imaging, volume 313, pages 117 – 129, 2002.

[20] Bernd Fischer and Jan Modersitzki. Curvature based image registration. Journal of Mathematical
Imaging and Vision, 18:81 – 85, 2003.

[21] M. Fornefett, K. Rohr, and H.S. Stiehl. Radial basis functions with compact support for elastic regis-
tration of medical images. Image and Vision Computing, 19:87 – 96, 2001.

[22] Mike Fornefett, Karl Rohr, and H. Siegfried Stiehl. Elastic registration of medical images using radial
basis functions with compact support. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 1, pages 402 – 407, 1999.

[23] Ardeshir Goshtasby. Piecewise cubic mapping functions for image registration. Pattern Recognition,
20:525 – 533, 1987.

[24] Ardeshir Goshtasby. Image registration by local appoximation methods. Image and Vision Computing,
6(4):255 – 261, 1988.

[25] Lisa gottesfeld brown. A survey of image registration techniques. ACM computing surveys, 24(4):325 –
376, 1992.

[26] Eldad Haber and Stefan Heldmann. An octree multigrid method for quasi-static Maxwell’s equations
with highly discontinuous coefficients. Journal of Computational Physics, 223(2):783 – 796, 2007.

[27] Eldad Haber, Stefan Heldmann, and Jan Modersitzki. An octree method for parametric image regis-
tration. SIAM journal on scientific computing, 29(5):2008 – 2023, 2007.

[28] Eldad Haber, Stefan Heldmann, and Jan Modersitzki. Adaptive mesh refinement for nonparametric
image registration. SIAM journal on scientific computing, 30(6):3012 – 3027, 2008.

[29] Eldad Haber and Jan Modersitzki. A multilevel method for image registration. SIAM journal on
scientific computing, 27(5):1594 – 1607, 2006.

[30] Wolfgang Hackbusch. Multigrid methods and applications, volume 4 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin, 1985.

[31] Stefan Henn and Kristian Witsch. Iterative multigrid regularization techniques for image matching.
SIAM journal on scientific computing, 23(4):1077 – 1093, 2001.

[32] Derek L G Hill, Philipp G Batchelor, Mark Holden, and David J Hawkes. Medical image registration.
Physics in medicine and biology, 46:R1 – R45, 2001.

28



[33] Lars Homke. A multigrid method for anisotropic pdes in elastic image registration. Numerical Linear
Algebra with Applications, 13:215 – 229, 2006.

[34] Luis Ibanez, Will Schroeder, Lydia Ng, and Josh Cates. The ITK Software Guide. Kitware, Inc., second
edition, 2005.

[35] Fumihiko Ino, Yasuhiro Kawasaki, Takahito Tashiro, Yoshikazu Nakajima, Yoshinobu Sato, Shinichi
Tamura, and Kenichi Hagihara. A parallel implementation of 2-d/3-d image registration for computer-
assisted surgery. In 11th International Conference on Parallel and Distributed Systems (ICPADS’05),
2005.

[36] Fumihiko Ino, Kanrou Ooyama, and Kenichi Hagihara. A data distributed parallel algorithm for nonrigid
image registration. Parallel Computing, 31:19 – 43, 2005.

[37] El Mostafa Kalmoun, Harald Kostler, and Ulrich Rude. 3-d optical flow computation using a parallel
variational multigrid scheme with application to cardiac c-arm ct motion. Image and Vision Computing,
25:1482 – 1494, 2007.

[38] Stefan Kruger and Andrew Calway. Image registration using multiresolution frequency domain corre-
lation. In British Machine Vision Conference, pages 316 – 325, 1998.

[39] Jan Kybic and Michael Unser. Multiresolution spline warping for epi registration. In in Proceedings of
SPIE, pages 571 – 579, 1999.

[40] Jan Kybic and Michael Unser. Fast parametric elastic image registration. IEEE Transactions on Image
Processing, 12(11):1427 – 1442, 2003.

[41] Hava Lester and Simon R. Arridge. A survey of hierarchical non-linear medical image registration.
Pattern Recognition, 32:129 – 149, 1999.

[42] J. B. Antoine Maintz and Max A. Viergever. A survey of medical image registration. Medical Image
Analysis, 2(1):1 – 36, 1998.

[43] J. Modersitzki, G. Lustig, O. Schmitt, and W. Obeloer. Elastic registration of brain images on large
pc-clusters. Future generation computer systems, 18:115 – 125, 2001.

[44] J. Modersitzki, W. ObelSer, O. Schmitt, and G. Lustig. Elastic matching of very large digital images
on high performance clusters. In Proceedings of the 7th International Conference on High-Performance
Computing and Networking, volume 1593 of LNCS, pages 141 – 149, 1999.

[45] Jan Modersitzki. Numerical Methods for Image Registration. Numerical Mathematics and Scientific
Computation. Oxford Univ Press, 2004.

[46] Jacqueline Le Moigne, William J. Campbell, and Robert F. Cromp. An automated parallel image
registration technique based on the correlation of wavelet features. IEEE transactions on geoscience
and remote sensing, 40(8):1849 – 1864, 2002.

[47] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer series in operations research.
Springer, 2006.

[48] Alexis Roche, Gregoire Malandain, Nicholas Ayache, and Sylvain Prima. Towards a better compre-
hension of similarity measures used in medical image registration. In Medical Image Computing and
Computer-Assisted Intervention (MICCAI), volume 1679 of LNCS, pages 555 – 567, 1999.

[49] K. Rohr, H.S. Stiehl, R. Sprengel, W. Beil, T.M. Buzug, J. Weese, and M.H. Kuhn. Point-based elastic
registration of medical image data using approximating thin-plate splines. Visualization in biomedical
computing, pages 297 – 306, 1996.

[50] Karl Rohr. Spline-based elastic image registration. Proceedings in Applied Mathematics and Mechanics,
3:36 – 39, 2003.

29



[51] Rahul S. Sampath, Santi S. Adavani, Hari Sundar, Ilya Lashuk, and George Biros. Dendro: Parallel
algorithms for multigrid and AMR methods on 2:1 balanced octrees. In SC ’08: Proceedings of the 2008
IEEE/ACM conference on Supercomputing. IEEE, 2008.

[52] Rahul S. Sampath and George Biros. A parallel geometric multigrid method for finite elements on
octree meshes. Technical report, Georgia Institute of Technology, 2008. Submitted for publication.

[53] Oliver Schmitt, Jan Modersitzki, Stefan Heldmann, Stefan Wirtz, and Bernd Fischer. Image registration
of sectioned brains. International Journal of Computer Vision, 73(1):5 – 39, 2007.

[54] Carlos O. S. Sorzano, Philippe Thevenaz, and Michael Unser. Elastic registration of biological images
using vector-spline regularization. IEEE transactions on biomedical engineering, 52(4):652 – 663, 2005.

[55] Radu Stefanescu, Xavier Pennec, and Nicholas Ayache. Grid-enabled non-rigid registration of medical
images. Parallel processing letters, 14(2):197 – 216, 2004.

[56] Hari Sundar, Christos Davatzikos, and George Biros. Biomechanically-constrained 4D estimation of
myocardial motion. Technical report, University of Pennsylvania, 2008.

[57] Hari Sundar, Rahul S. Sampath, Santi S. Adavani, Christos Davatzikos, and George Biros. Low-constant
parallel algorithms for finite element simulations using linear octrees. In SC ’07: Proceedings of the
2007 ACM/IEEE conference on Supercomputing, New York, NY, USA, 2007. ACM Press.

[58] Hari Sundar, Rahul S. Sampath, and George Biros. Bottom-up construction and 2:1 balance refinement
of linear octrees in parallel. SIAM Journal on Scientific Computing, 30(5):2675 – 2708, 2008.

[59] Richard Szeliski and Stephane Lavallee. Matching 3-d anatomical surfaces with nonrigid deformations
using octree-splines. International Journal of Computer Vision, 18(2):171 – 186, 1996.

[60] Richard Szeliski and Heung-Yeung Shum. Motion estimation with quadtree splines. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(12):1199 – 1210, 1996.

[61] TACC. Ranger’s system architecture. http://www.tacc.utexas.edu.

[62] Mark P. Wachowiak and Terry M. Peters. Parallel optimization approaches for medical image regis-
tration. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 3216 of
LNCS, pages 781 – 788, Berlin Heidelberg, 2004. Springer-Verlag.

[63] Stefan Wirtz, Bernd Fischer, Jan Modersitzki, and Oliver Schmitt. Super-fast elastic registration of
histologic images of a whole rat brain for three-dimensional reconstruction. Medical Imaging, 5370:328
– 334, 2004.

[64] Gert Wollny and Frithjof Kruggel. Computional cost of nonrigid registration algorithms based on fluid
dynamics. IEEE Transactions on Medical Imaging, 21(8):946 – 952, 2002.

[65] Stefan Worz and Karl Rohr. Physics-based elastic registration using non-radial basis functions and
including landmark localization uncertainties. Computer Vision and Image Understanding, 111:263 –
274, 2008.

[66] Harry Yserentant. On the convergence of multi-level methods for strongly nonuniform families of grids
and any number of smoothing steps per level. Computing, 30:305 – 313, 1983.

[67] Barbara Zitova and Jan Flusser. Image registration methods: A survey. Image and Vision Computing,
21:977 – 1000, 2003.

30


	Introduction
	Octree discretization
	Interpolation
	Image partition

	Solvers
	Gauss-Newton approximation
	Multigrid preconditioner
	Grid continuation

	Results
	Synthetic examples
	Medical imaging examples
	Effect of the thresholding parameter
	Parallel scalability

	Summary

