
PARALLEL LAGRANGE-NEWTON-KRYLOV-SCHUR ALGORITHMS FOR
PDE-CONSTRAINED OPTIMIZATION

PART II: THE LAGRANGE-NEWTON SOLVER AND ITS
APPLICATION TO OPTIMAL CONTROL OF STEADY VISCOUS FLOWS∗

GEORGE BIROS† AND OMAR GHATTAS‡

Abstract. In this paper we follow up our discussion on algorithms that are suitable for optimization of systems
governed by steady-state partial differential equations. In the first part of of this paper we proposed a Lagrange-
Newton-Krylov-Schur method (LNKS) that uses Krylov iterations to solve the Karush-Kuhn-Tucker system of op-
timality conditions, but invokes a preconditioner inspired by reduced space quasi-Newton algorithms. In the second
part we focus our discussion to the outer iteration and we provide details on how to obtain a robust and globally
convergent algorithm. Newton’s step is known to lead to divergence for points far from the optimum. Furthermore
for highly nonlinear problems the computation of a step by itself is very difficult (for both QN-RSQP and LNKS
methods). As a remedy we employ line search methods, hybrid Newton/quasi-Newton algorithms, truncated nonlin-
ear iterations and continuation. We test the globalized LNKS algorithm on a optimal flow control problem were the
constraints are the steady incompressible Navier-Stokes equations. The objective function is the minimization of the
dissipation functional. We report results from runs on up to 128 processors on a T3E-900 at the Pittsburgh Super-
computing Center. Our numerical experiments demonstrate the very good scalability of the new method. Moreover,
LNKS is an order of magnitude faster than reduced quasi-Newton SQP, and we are able to solve previously intractable
problems of up to 800,000 state and 5,000 decision variables—at 5 times the cost of a single PDE solution.
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1. Introduction. In the first part of the paper we proposed a Lagrange-Newton-Krylov
method for PDE-constrained optimization. We concentrated our discussion on the inner itera-
tion: the solution of the linear system associated to a Newton step for the KKT optimality con-
ditions. The algorithm is based on a Krylov solver combined with a Schur-type preconditioner
which is equivalent to an approximate quasi-Newton RSQP step. We termed the method
“Lagrange-Newton-Krylov-Schur”, (LNKS) for concatenation of “Lagrange-Newton” method
which is used in the outer iteration and “Krylov-Schur” is used to converge the inner itera-
tion. We also provided theoretical and numerical evidence that these preconditioners work
very well.

In the second part we follow up with algorithmic details on the outer Lagrange-Newton
solver. We also look at more stringent test problems that contain many features of the most
challenging PDE-constrained optimization problems: three-dimensionality, multicomponent
coupling, large scale, nonlinearity, and ill-conditioning. The problem is one of optimal con-
trol of a viscous incompressible fluid by boundary velocities, a problem of both theoretical
and industrial interest.
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2 G. BIROS AND O. GHATTAS

Following Part I, we refer to the unknown PDE field quantities as the state variables;
the PDE constraints as the state equations; solution of the PDE constraints as the forward
problem; the inverse, design, or control variables as the decision variables; and the problem of
determining the optimal values of the inverse, design, or control variables as the optimization
problem.

This paper is organized as follows: in Section 2 we briefly review the problem formu-
lation. We discuss algorithmic issues related to Lagrange-Newton methods and in particular
globalization methodologies. We give details on three techniques: line search, mixing QN-
RSQP steps with LNKS steps, and continuation. To enhance robustness, these methodologies
are combined in the globalized LNKS algorithm. We also discuss inexact Newton methods
and how they interact with a line search algorithm. In Section 3 we present the overall LNKS
algorithm; in Section 4 we discuss the formulation of the optimal control problem for the
Navier-Stokes equations; and in Section 5 we conclude with results from computations for a
Poiseuille flow, a flow around a cylinder, and a flow around a Boeing-707 wing.

Notation: we use boldface characters to denote vector valued functions and vector valued
function spaces. We use roman characters to denote discretized quantities and italics for their
continuous counterparts. For example u will be the continuous velocity field and u will be its
discretization. Greek letters are overloaded and whether we refer to the discretization or the
continuous fields should be clear from context. We also use (+) as a subscript or superscript
to denote variable updates within an iterative algorithm.

2. The Newton solver. Let us reconsider the constrained optimization problem formu-
lation,

min
x∈RN

f(x) subject to c(x) = 0, (2.1)

where x ∈ R
N are the optimization variables, f : R

N → R is the objective function and
c : R

N → R
n are the constraints. In our context these constraints are discretizations of the

state equations. The Lagrangian,

L(x,λ) := f(x) + λT c(x), (2.2)

is used to convert the constrained optimization problem to a system of nonlinear equations.
These equations are the first order optimality conditions:

{

∂xL
∂λL

}

(x,λ) =

{

g(x) + A(x)T λ

c(x)

}

= 0 (or h(q) = 0). (2.3)

We use g for the gradient of the objective function, A for the Jacobian of the constraints,
and W for the Hessian of the Lagrangian. We use Newton’s method to solve for x and λ. A
Newton step on the optimality conditions is given by

[

W AT

A 0

]{

px

pλ

}

= −

{

g + AT λ

c

}

( or Kv = −h), (2.4)

where px and pλ are the updates of x and λ from current to next iterations. In Part I we
reviewed the most popular algorithm for solving for a KKT point, the RSQP algorithm and
its quasi-Newton variant (Algorithm 3 in the first paper). Although these algorithms are
very efficient and robust, they do not scale very well with the number of decision variables.
They avoid solving (2.4) directly, but require a large number of linearized forward solves
and thus can be inefficient for large-scale PDE-constrained optimization. We argued that a
better approach would be to stay in the full space and use a Krylov method to solve (2.4). For
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most problems however, the KKT matrix is notoriously ill-conditioned. In the first part of
this paper we addressed this problem by proposing efficient preconditioning techniques. The
key idea was to use an approximate QN-RSQP as a preconditioner. We showed that RSQP
can be viewed as a block-LU factorization in which the reduced Hessian Wz is the Schur
complement for the decision variables. Therefore, approximate versions of this factorization
can be used as preconditioners. A sketch of the LNKS method is given by Algorithm 1.

Algorithm 1 Lagrange-Newton-Krylov-Schur
1: Choose x,λ
2: loop
3: Check for convergence
4: Compute c,g,A,W
5: Solve P−1Kv = P−1h (Newton Step)
6: Update x = x + px

7: Update λ = λ + pλ

8: end loop

Nevertheless, there are two questions that should be answered before we can claim a
fast and robust general-purpose algorithm. The first question is whether LNKS algorithm
is convergent for any initial guess (x0,λ0) and the second one is whether we can utilize
inexact1 Newton methods to further accelerate LNKS. Within this framework we examine
line search algorithms, mixing QN-RSQP and LNKS algorithms, continuation, and inexact
Newton methods.

2.1. Line search methods. Algorithm 1 is only locally convergent. Popular method-
ologies to globalize Newton’s method include line search and trust region algorithms. Details
can be found in [19]. Recently, there has been an increased interest in trust region method-
ologies, especially in combination with RSQP and inexact Newton methods. These methods
have been successfully applied to PDE-constrained optimization [12], [15], [17]. Global con-
vergence proofs for these methods can be found in [3]. Trust region methods are based on
the Steihaug modification [22] of the Conjugate Gradient (CG) algorithm. However, this
approach works well only with positive definite systems. It is not obvious how to use trust-
regions with an indefinite Krylov solver (which is required for the KKT system) and thus we
have opted to use a line search algorithm.

The basic component of a line search algorithm is the choice of a merit function: a
scalar function (on the optimization variables) that monitors the progress of the algorithm. In
contrast with unconstrained optimization, the choice of a merit function is not straightforward
since we are trying to balance minimization of the objective function with feasibility. Two
common choices are the l1-merit function,

φ(x) := f + ρφ‖c‖1, (2.5)

and the augmented Lagrangian,

φ(x,λ) := f + cT λ +
ρφ

2
cT c. (2.6)

The scalar ρφ is the penalty parameter—a weight chosen to bring the right balance be-
tween minimizing the objective function and minimizing the residuals of the constraints. Both

1Some authors use the term “truncated” instead of “inexact”.
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functions are “exact”, provided the penalty parameter is large enough. By exact we mean that
if (x∗,λ∗) is a minimizer for (2.1), then it is also an (unconstrained) minimizer for the merit
function. A crucial property of a merit function is that it should accept unit step lengths close
to a solution in order to allow full Newton steps and thus quadratic convergence. The l1-
merit function suffers from the “Maratos” effect, that is, sometimes it rejects good steps and
slows down the algorithm. The augmented Lagrangian merit function does not exhibit such
behavior but its drawback is that it requires accurate estimates of the Lagrange multipliers.

The outline of a general line search method is given in Algorithm 2. To simplify notation
we use φ(α) for φ(q+αv) and φ(0) for φ(q) (likewise for the derivative∇φ). The algorithm

Algorithm 2 Line search
1: Choose q, δA > 0 and κ1, κ2 arbitrary constants (strictly positive)
2: while Not converged do
3: Compute search direction v so that

vT∇φ(0) < 0
| vT∇φ(0)| ≥ κ1 ‖v‖ ‖∇φ(0)‖
‖v‖ ≥ κ2‖∇φ(0)‖

4: Compute α such that φ(α) ≤ φ(0) + αδAvT∇φ(0) Armijo condition
5: Set q = q + αv
6: end while

used to compute the search direction v is intentionally left unspecified. All that matters to
ensure global convergence is the properties of the merit function and the properties of v. Step
3 in Algorithm 2 lists three conditions on v: descent direction, sufficient angle and sufficient
step size [7]. The condition in Step 4 is often called the Armijo condition. If φ is bounded
and has a minimum, and if v is bounded, Algorithm 2 is guaranteed to converge to a local
minimum [18]. We use a simple backtracking line search, with a factor of 0.5. The search is
bounded so that αmin ≤ α ≤ 1. As mentioned before, the choice of the penalty parameter
has a great effect on the performance of the algorithm.

For a step computed by (quasi-Newton) Algorithm 3, in Part I the update for the l1-merit
function is relatively straightforward. The directional derivative for a search direction px is
given by

∇φT px = gT px − ρφ‖c‖1. (2.7)

If Wz is positive definite it can be shown that by setting

ρφ = ‖λ‖∞ + δ, δ > 0, (2.8)

we obtain a descent direction. In our numerical experiments we have used l1 with QN-RSQP
and augmented Lagrangian with LNKS. The l1-merit function performed reasonably well.
However, we did observe the Maratos effect. To overcome this obstacle we have implemented
a second order correction, in which an extra normal step towards feasibility is taken ([19],
p.570).

When an augmented Lagrangian merit function is used, the penalty parameter should be
chosen differently. The directional derivative of the augmented Lagrangian merit function is
given by

∇φT v = (g + AT λ + ρφA
T c)T px + cT pλ. (2.9)

Lagrange multipliers slightly complicate the algorithm since we have to compute pλ. Some
researchers consider λ as a function of x ([2], [6]), others treat it as an independent variable
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([3], [21]), or simply ignore it by setting pλ = 0 [23]. In LNKS we solve for λ simultaneously
with x and it is natural to use the step pλ. On the other hand, RSQP uses λ = −A−T

s gs and
it seems natural to consider λ a function of x. In this case the last term in (2.9) is given by

cT pλ = cT (∂xλ)px,

where

∂xλ := −A−T
s

[

Wss Wsd

]

.

(However, this formula can not be used with QN-RSQP methods since second derivatives are
not available.) If we set

ρφ =
(g + AT λ)px + cT pλ + δ

cT Apx
, δ > 0, (2.10)

we obtain a descent direction.

2.2. Combining QN-RSQP with LNKS. For iterates far from the solution, relying
solely on a line search algorithm will not work since the Newton step is likely to be of poor
quality. Usually global convergence can be shown if the reduced Hessian (Wz) is positive
definite (and not the full Hessian W). If Wz is positive definite (and assuming the system
(2.4) is solved exactly), then the resulting step v satisfies the Armijo descent criterion. Far
from the minimum, however, Wz can be singular or indefinite. On the other hand, certain
quasi-Newton methods, like BFGS, are preferable for iterates far from the solution since they
can guarantee positive definiteness. For this reason (and for preconditioning purposes) LNKS
does maintain a BFGS approximation for Wz: if a computed search direction fails to satisfy
the Armijo criterion we discard it and we switch to a QN-RSQP step.

2.3. Continuation. One of the standard assumptions in global convergence proofs is
the non singularity of the constraint Jacobian—for all iterates. For highly nonlinear PDEs,
like the Navier-Stokes equations, this is a rather unrealistic assumption. Even if the Jacobian
is nonsingular, severe ill-conditioning will cause both QN-RSQP and LNKS algorithms to
stall. Indeed, in our numerical experiments the most difficult computation, for iterates far
from the solution, was converging the As-related linear solves. Krylov solvers reached their
maximum iteration counts without a significant decrease the linear system residual. As a
result, the iterates were of very poor quality and the algorithm stagnated as it was impossible
to compute a search direction, be it from QN-RSQP or LNKS iteration.

A remedy to this problem is parameter continuation. This idea (in its simplest form)
works when we can express the nonlinearity of the problem as a function of a single scalar
parameter. Continuation is particularly suitable for PDE-constrained optimization because
it is quite typical for a PDE to have a parameter that scales the nonlinearities. Examples of
such parameters are the Reynolds and Mach numbers in fluid mechanics, the Peclet number
in general convection diffusion equations, or the Hartman number in magnetohydrodynam-
ics. In problems where such a parameter cannot be found an alternative is pseudo-transient
continuation [16].

Continuation allows uphill steps (unlike monotone line search methods) to be taken and
generates good initial guesses, not only for the optimization variables, but also for the penalty
parameter in the merit function. The most important feature of the continuation algorithm is
that it globalizes trivially (for certain problems2). If the continuation step brings the next

2This is true only when the initial problem is a well posed quadratic programming problem (like Stokes) and all
iterates on the continuation path are far from turning and bifurcation points.
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iterate outside the attraction basin of the Newton method the we simply reduced the step size.
In principle, the method globalizes LNKS without the need to use line search or some other
globalization strategy. Nevertheless, taking a large number of continuation steps significantly
slows down the algorithm. Experience from our numerical experiments suggests that the best
strategy is a combination of line searching, quasi-Newton steps, and continuation.

2.4. Inexact Newton’s method. Before we discuss inexact Newton’s method in the
context of LNKS, we briefly summarize a few results for a general nonlinear system of
equations. Assume we want to solve h(q) = 0. Further assume the following: (1) h and
K := ∂qh are sufficiently smooth in a neighborhood of a solution q∗; (2) at each iteration an
inexact Newton method computes a step v that satisfies

‖Kv + h‖ ≤ ηN‖h‖, (2.11)

where ηN is often called the forcing term. It can be shown that if ηN < 1 then q → q∗

linearly; if ηN → 0 then q → q∗ superlinearly; and if ηN = O(‖h‖) then we recover the
quadratic convergence rates of a Newton method. The forcing term is usually given by

ηN =
‖h(+) − h−Kv‖

‖h‖
. (2.12)

Other alternatives exist (for details see [5]).
The extension of inexact methods to optimization is relatively easy, especially for uncon-

strained problems. In [12] global convergence proofs are given for a trust region RSQP-based
algorithm. Close to a KKT point the theory for Newton’s method applies and one can use the
analysis presented in [4] to show that the inexact version of the LNKS algorithm converges.
However, the line search we are using is not based on the residual of the KKT equations but
instead on the merit function discussed in the previous session. That means that an inexact
step that simply reduces h may not satisfy the merit function criteria. We will show that for
points which are close enough to the solution, inexactness does not interfere with the line
search. Our analysis is based on the augmented Lagrangian merit function3. We assume that,
locally, A and K are non-singular and uniformly bounded. We define κ1 := max‖K−1(q)‖
for q in the neighborhood of the solution q∗. We also define v as the exact solution of the
(linearized) KKT system so that

Kv + h = 0, (2.13)

and ṽ the approximate solution so that

Kṽ + h = r. (2.14)

We also have ‖r‖ = η‖h‖, 0 < η ≤ ηN , from the inexact Newton stopping criterion (2.11).
By (2.3) we get that ‖h‖2 = ‖g + AT λ‖2 + ‖c‖2 and since A is bounded, there is constant
κ2 such that:

‖AT c‖ ≤ κ2‖h‖. (2.15)

We assume the following: (1) ρφ is sufficiently large so that the merit function is exact and
‖∇φ‖ ≥ κ3‖h‖ for some constant κ3; (2) v satisfies the gradient and length conditions,

3For brevity we drop the subscript from φL and we just use the symbol φ.
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as well as the Armijo condition. From the latter it is immediate that v satisfies the Cauchy
fraction condition4:

|∇φT v| ≥ 2κ4‖∇φ‖
2. (2.16)

We will show that if η is small enough then the approximate step ṽ satisfies the Cauchy
fraction, the gradient, and length conditions. Then, we will use a theorem from [18] to con-
clude that the Armijo condition is satisfied with unit step lengths. Therefore if η = O(‖h‖)
quadratic convergence is preserved.

From (2.13) and (2.14) we have

∇φT ṽ = ∇φT v + ∇φT K−1r,

and thus by (2.16) we get

|∇φT ṽ| ≥ 2κ4‖∇φ‖
2 − |∇φT K−1r|.

Therefore to satisfy the Cauchy fraction condition

|∇φT ṽ| ≥ κ4‖∇φ‖
2, (2.17)

we need to show that

|∇φT K−1r| ≤ κ4‖∇φ‖
2. (2.18)

The gradient of the merit function is given by

∇φ = h + ρφ

{

AT c

0

}

,

and thus

|∇φT K−1r| = |hT K−1r + ρφ

{

AT c

0

}T

K−1r|

≤ κ1

(

‖h‖ ‖r‖+ ρφ‖A
T c‖ ‖r‖

)

≤ κ1η
(

‖h‖2 + ρφ‖A
T c‖ ‖h‖

)

≤ κ1η(1 + ρφκ2)‖h‖
2

≤ κ1η(1 + ρφκ2)
‖∇φ‖2

κ2
3

.

If

η ≤
κ4 κ

2
3

κ1(1 + ρφκ2)
(2.19)

then (2.18) holds. If we choose a superlinearly convergent inexact Newton variant then

η ≤ ηN → 0,

4The Cauchy step is a steepest descent step for the merit function.
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and therefore close to the solution (2.19) holds. We also have that

ṽ = K−1(r − h)

‖ṽ‖ ≤ κ1(1 + η)‖h‖

‖ṽ‖ ≤ κ1(1 + η)
‖∇φ‖

κ3

‖ṽ‖ ≤ κ5‖∇φ‖. (2.20)

By combining (2.20) and (2.17) we get

|∇φT ṽ| ≥ κ4‖∇φ‖
2 ≥ κ4κ5‖∇φ‖ ‖ṽ‖,

and

‖∇φ‖ ‖ṽ‖ ≥ κ6|∇φ
T ṽ| ≥ κ6κ4‖∇φ‖

2 ⇒

‖ṽ‖ ≥ κ7‖∇φ‖.

That is, the gradient and angle conditions are satisfied. It can be shown ([18], Theorem 10.6)
that there is α, bounded bellow, so that Armijo condition holds true. Thus by choosing δA

small enough, the Armijo condition is satisfied with unit steplength. Hence the quadratic
convergence rate associated with Newton’s method is observed, i.e. the inexactness does
not interfere with the merit function. In addition it can be shown that the augmented La-
grangian merit function allows unit steplength near the solution (see [6], [21] and the refer-
ences therein). Finally, notice that convergence does not require that ηN → 0; it only requires
that ηN is small enough. This is in contrast with inexact reduced space methods which require
the tolerances to become tighter as the iterates approach the solution [12].

2.5. The globalized LNKS algorithm. In the previous sections we discussed the vari-
ous features of our globalization strategies. In this section we summarize by giving a high-
level description of implementation details and heuristics we are using in the globalized
LNKS. The basic steps of our method are given in Algorithm 3. The algorithm uses a three-
level iteration. In the outer iteration the continuation parameter is gradually increased until the
target number is reached.The middle iterations correspond to Lagrange-Newton linearizations
of the optimality system for a fixed continuation number. Finally, the inner iteration consists
of two core branches: the computation of an LNKS search direction and the computation of
the search direction with QN-RSQP. The default branch is the LNKS step. If this step fails to
satisfy the line search algorithm conditions then we switch to QN-RSQP. If QN-RSQP fails
too, then we reduce the continuation parameter Re and we return to the outer loop.

Here we summarize the basic steps of the algorithm. We also mention several heuristics
we have used to improve the performance of the method.

• Linear solves at steps 8, 16 and 17 are performed inexactly. We follow [5] in choos-
ing the forcing term. In steps 16, and 17 the forcing term formula uses ‖c‖ and
‖gz‖, whereas in step 8 it uses ‖h‖. In 7 we also experimented with ‖∇φ‖ as a way
to control inexactness but we found no significant difference.

• In step 6 we use the adjoint variables to update the reduced gradient. This is equiva-
lent to gz = gd −AT

d A−T
s gs, if λ is computed by solving exactly AT

s λ + gs = 0.
When λ is taken from LNKS, it includes second order terms (which reduce to zero
as we approach the solution), and when λ is taken from QN-RSQP it also introduces
extra error since we never solve the linear systems exactly.

• We use various heuristics to bound the penalty parameter and if possible reduce
it. A new penalty parameter ρ+

φ is computed using the LNKS step and formula
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Algorithm 3 Globalized LNKS
1: Choose xs, xd, ρφ, t, δA, set Re = Restart , tol = tol0

2: AT
s λ + gs ≈ 0 solve inexactly for λ

3: while Re 6= Retarget do
4: loop
5: Evaluate f, c, g, A, W

6: gz = gd + AT
d λ

7: Check convergence: ‖g + AT λ‖ ≤ tol and ‖c‖ ≤ tol

8: P−1Kv + P−1h ≈ 0 solve inexactly for v

9: Compute ρφ such that ∇φT (0)v ≤ 0
10: Compute α s.t. φ(α) ≤ φ(0) + δAα(∇φT (0)v)
11: if Line search failed then
12: Compute α s.t. ‖h(α)‖ < t‖h(0)‖
13: end if
14: if LNKS step failed then
15: Bzpd = −gz solve inexactly for pd

16: Asps + Adpd + c ≈ 0 solve inexactly for ps

17: AT
s λ+ + gs ≈ 0 solve inexactly for λ+

18: Compute α s.t. φ(α) ≤ φ(0) + δAα(∇φT (0)v)
19: if Line search on QN-RSQP step failed then
20: Reduce Re and go to step 5.
21: end if
22: end if
23: λ+ = λ + pλ (only for LNKS step)
24: x+ = x + px

25: end loop
26: Re = Re + ∆Re

27: Tighten tol

28: end while

(2.10). If ρ+
φ > 4ρφ we update the penalty parameter and we switch to QN-RSQP.

If ρ+
φ < ρφ/4 we reduce the penalty parameter and set ρ+

φ = 0.5ρφ. We also reduce
the penalty parameter if there is a successful search on the KKT residual (step 12).

• We allow for non-monotone line searches. If the LNKS step is rejected by the merit
function line search we do not switch immediately to QN-RSQP. Instead we do a line
search (step 12) on the KKT residual and if the step is accepted we use it to update
the variables for the next iteration. However, we do store the iterate and the merit
function gradient, and we insist that some step satisfies the conditions of the merit
line search (evaluated at the failure point) after a fixed number of iterations. Oth-
erwise, we switch to QN-RSQP. Typically, we permit two steps before we demand
reduction of the merit function.

• A Lanzos algorithm can be used to (approximately) check the second-order opti-
mality conditions. If the lowest eigenvalue of W̃z is negative then a QN-RSQP step
is taken without computing the full-space directions. The eigenvalues are frozen
through a single continuation step, but if a negative direction is detected they are
recomputed at each SQP iteration.

In the next section we study an optimal control problem of the steady incompressible
Navier-Stokes equations. We cite results on the existence and uniqueness of solutions and
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make comparisons between the discrete and continuous forms of the optimality conditions.

3. Formulation of an Optimal Control Problem. In this section we turn our attention
to the formulation and well-posedness of a specific optimization problem: the Dirichlet con-
trol of the steady incompressible Navier-Stokes equations. We present the continuous form
of the Karush-Kuhn-Tucker optimality conditions and we cite convergence results for finite
element approximations from [13] and [14]. A survey and articles on this topic can be found
in [9]. More on the Navier-Stokes equations can be found in [8, 11]. We are studying prob-
lems in which we specify both Dirichlet and Neumann boundary conditions. The controls are
restricted to be only of Dirichlet type but the theory is similar for distributed and Neumann
controls [13].

We use the velocity-pressure (u, p) form of the incompressible steady state Navier-
Stokes equations. We begin by writing the following strong form of the flow equations:

−ν∇ · (∇u + ∇uT ) + (∇u)u + ∇p = b in Ω,
∇ · u = 0 in Ω,
u = ug on Γu,
u = ud on Γd,

−pn + ν(∇u + ∇uT )n = 0 on ΓN .

(3.1)

Here ν = 1/Re and the decision variables are the velocities ud on Γd. For a forward solve
we need not distinguish between Γd and Γu. In the optimization problem however, ud is
not known. We will present a mixed formulation that treats the tractions on the Dirichlet
boundary Γd as additional unknown variables. The traction variables here play the role of
Lagrange multipliers (not to be confused with the Lagrange multipliers or the optimal control
problem) and are used to enforce the Dirichlet boundary conditions [1].

With L2(Ω) we denote the space of scalar functions which are square-integrable in Ω,
and with H1(Ω) we denote vector functions whose first derivatives are in L2(Ω). H1/2(Γ)
is the trace space (the restriction on Γ) of functions belonging to H1(Ω). Finally H−k(D)
is the set of bounded linear functionals on functions belonging to Hk(D), where D is some
smooth domain in R

3. We also define V :=
{

v ∈ H1(Ω) : v|Γu
= 0

}

. We define the
following bilinear and trilinear forms associated with the Navier-Stokes equations:

a(u,v) :=

∫

Ω

(∇u + ∇uT ) · (∇v + ∇vT ) dΩ ∀ u,v ∈ H1(Ω),

c(w,u,v) :=

∫

Ω

(∇u)w · v dΩ ∀ u,v,w ∈ H1(Ω),

b(q,v) :=

∫

Ω

−q∇ · v dΩ ∀ q ∈ L, v ∈ H1(Ω).

We also use the notation (x,y)D for
∫

D
x · y dD.

In the weak formulation of (3.1) we seek u ∈ H1(Ω), p ∈ L2(Ω) and σ ∈ H−1/2(Γd)
such that:

νa(u,v) + c(u,u,v) + b(p,v) − (σ,v)Γd
= (f ,v)Ω ∀ v ∈ V ,

b(q,u) = 0 ∀ q ∈ L2(Ω), (3.2)

− (t,u)Γd
= −(t,ud)Γd

∀ t ∈ H−1/2(Γd).

We also define d to be the decision field (so that ud = d). Based on the above formulation we
can proceed in defining the Lagrangian function for the optimization problem. The objective
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function is given by

J (u,d) :=
ν

2
a(u,u) +

ρ

2
(d,d)Γd

, (3.3)

and (the weak form of) the constraints are given by (3.2). We define the Lagrangian function
as follows:

L(u, p,d,σ,λ, µ, τ ) := J (u,d)

+ νa(u,λ) + c(u,u,λ) − (σ,λ)Γd
− (f ,λ)Ω + b(p,λ)

+ b(µ,u) − (τ ,u − d)Γd
, (3.4)

∀ u ∈ H1(Ω), p ∈ L2(Ω), σ ∈ H−1/2(Γd), d ∈ H1/2(Γd),

∀ λ ∈ V , µ ∈ L2(Ω), τ ∈ H−1/2(Γd).

Here λ, µ, τ are the Lagrange multipliers for the state variables u, p,σ. By taking variations
with respect to the Lagrange multipliers we obtain (3.2) augmented with ud = d on Γd.
Taking variations with respect to the states u, p,σ we obtain the weak form of the adjoint
equations:

νa(v,λ) + c(v,u,λ) + c(u,v,λ) + b(µ,v) + (τ ,v)Γd
= −νa(u,v) ∀ v ∈ V ,

b(q,λ) = 0 ∀ q ∈ L2(Ω) (3.5)

(t,λ)Γd
= 0 ∀ t ∈ H−1/2(Γd).

Finally, by taking variations with respect to d we obtain the decision equation

ρ(d, r)Γd
+ (τ , r)Γd

= 0 ∀ r ∈ H1/2(Γd). (3.6)

Equations (3.2), (3.5), (3.6) are the weak form of the first order optimality conditions. In
[13], [14] there is extensive discussion on the existence of a solution and the existence of the
Lagrange multipliers. In [13] the existence of a local minimum for the optimization problem
and the existence of Lagrange multipliers that satisfy the first order optimality conditions is
asserted5. Furthermore, uniqueness is shown upon sufficiently small data. Note that in the ab-
sence of a Neumann condition ( ΓN = ∅) the the controls have to satisfy the incompressibility
condition (d · n)Γd

= 0.
The strong form of the adjoint and decision equations can be obtained by using the fol-

lowing integration by parts formulas:

a(u,v) = −(v,∆u)Ω + ((∇u)n,v)Γ,

c(u,v,λ) = −c(u,λ,v) − ((∇ · u)λ,v)Ω + ((u · n)λ,v)Γ,

b(µ,v) = (∇µ,v)Ω − (µn,v)Γ.

Upon sufficient smoothness we arrive at the strong form of the optimality conditions.
Equation (3.1) is the strong form of the constraints. The strong form of the adjoint equations
is given by

− ν∇ · (∇λ + ∇λT ) + (∇u)T λ − (∇λ)u + ∇µ = ν∇ · (∇u + ∇uT ) in Ω,

∇ · λ = 0 in Ω,

λ = 0 on Γu, (3.7)
λ = 0 on Γd,

− µn + ν(∇λ + ∇λT )n + (u · n)λ = −ν(∇u + ∇uT )n on ΓN ,

5The objective functional used in [13] is different than ours. An
�

4 functional is used for the matching problems
and a � 1

Γd
is used for the penalization of � d—resulting on a surface Laplacian equation for the decision variables.
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and (equation for τ )

ν(∇λ + ∇λT )n + ν(∇u + ∇uT )n − τ = 0 on Γd. (3.8)

We may also determine that the strong form of the decision equation is given by

τ = ρd on Γd. (3.9)

In [13] estimates are given on the convergence rates of the finite element approximations
to the exact solutions for the optimal control of steady viscous flow. For the case of bound-
ary velocity control, the basic result is that, if the exact solutions are smooth enough, then,
provided the Taylor-Hood element is used (for both adjoints and states), the solution error
satisfies the following estimates:

‖u− uh‖0 ≤ O(h3),

‖p− ph‖0 ≤ O(h2),
(3.10)

‖λ − λh‖0 ≤ O(h3),

‖µ− µh‖0 ≤ O(h2).

Here h is the maximum element size, and ‖ · ‖0 is the L2(Ω) norm.

3.1. Discrete and discretized optimality conditions. In our implementation we have
not discretized the continuous forms of the optimality conditions. Instead we have discretized
the objective function and the Navier-Stokes equations and then we used this discretization
to form the optimality conditions. In general, discretization and differentiation (to obtain
optimality conditions) do not commute. That is, if A is the infinite dimensional (linearized)
forward operator and A∗ is its adjoint then in general

(A∗)h 6= (Ah)T ,

where the subscript h indicates discretization. We will show that for Galerkin approxima-
tion of the steady incompressible Navier-Stokes optimal control problem, discretization and
differentiation do commute.

For the discretized equations we use the following notation:

a(uh,vh) + c(uh,uh,vh) 99K U(u)u,

a(uh,vh) + c(ph,uh,vh) + c(uh,ph,vh) 99K V(u)p,

a(uh,vh) 99K Qu,

b(qh,uh) 99K Pu,

(th,uh)Γd
99K Tu,

(dh, rh)Γd
99K Md.

then, the discrete form of the Navier-Stokes equations is given by

U(u)u + PT p + TT σ = f1,

Pu = f2, (3.11)
Tu = Td.

The discrete Lagrangian function is given by

1

2
uT Qu +

ρ

2
dT Md + λT

{

U(u)u + PT p + TT σ − f1
}

(3.12)
+µT {Pu − f2} + τ T {Tu + Td} = 0.
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By taking derivatives with respect to the discrete Lagrange multiplier vectors λ,µ, τ , we
recover the state equations (3.11). By taking derivatives with respect to the discrete state
variables u,p,σ, we obtain the discrete adjoint equations:

VT (u)λ + PT µ + TT τ = −Qu,

Pλ = 0, (3.13)
Tλ = 0.

These equations correspond to the discretization of equations (3.5) provided that VT λ is
the discretization of a(λ,u) + c(v,u,λ) + c(u,v,λ). The bilinear form a(·, ·) is symmetric
so we omit it from our discussion. If φ denotes the basis function for u, ψv for v, and ψλ for
λ then the (3 × 3)-block elements for the linearized state and the adjoint are:

∫

Ω

I (∇φ · u)ψv + (∇u)φψv dΩ state element matrix,
∫

Ω

I (∇ψv · u)ψλ + (∇u)Tψλψv dΩ adjoint element matrix.

Therefore, the transpose of the discretized (linearized) state equations coincides with the
discretization of the adjoint equations, i.e.

(A∗)h = (Ah)T .

One needs to be careful to use the weak form given by equation (3.5). If (3.7) were used
without employing the reverse integration by parts on the term c(u,v,λ), this would result
in a discretization which is incompatible with the discrete optimization problem (which is
what the optimizer sees). It would result in an unsymmetric KKT-matrix and possibly would
prevent the optimizer from converging to a KKT point. A Petrov-Galerkin formulation would
also be incompatible.

In our formulation we do not solve explicitly for σ and τ . We approximate both tractions
and velocity traces in H1(Γd); in this case the stresses can be eliminated. For a discussion
on choice of H1(Γd) for the stresses see [10]. The resulting equations are equivalent to the
formulations described in this section. We use a standard Galerkin approximation scheme
(no upwinding) with Taylor-Hood elements to approximate the velocities, the pressures, and
their adjoints.

We conclude this section with a note on continuation. To solve a Navier-Stokes control
problem with large Reynolds number, some kind of continuation scheme is usually needed.
We first solve a Stokes-flow optimal control problem (Re0 = 0) and then we progressively in-
crease the Reynolds number by Re(+) = Re+∆Re. One could set u(+) = u+(∂Re)u∆Re,
where ∂Reu can be easily computed through a linearized forward solve. Since we consider
only steady flows, we follow [8] and use fixed ∆Re, and simply set u(+) = u, i.e. the ini-
tial guess at the new Reynolds number is the solution from the previous optimization step.
Additionally, quasi-Newton information is carried forward to the next Reynolds number.

4. Numerical Results. In this section we use four numerical tests to investigate the
accuracy and scalability of LNKS method. First we test the finite element approximation
convergence rates with a problem that has an analytic solution. Then we revisit the Poiseuille
flow problem—which is also a solution for the Navier-Stokes—and use it to study the effec-
tiveness of the limited-BFGS method as a preconditioner for the reduced Hessian. In both
cases we solve for the boundary conditions that reproduce the exact solution by minimizing
a matching velocity functional.



14 G. BIROS AND O. GHATTAS

We continue with the more challenging problem a the control of flow around a cylinder.
The objective function to be minimized is the dissipation functional. We use this problem to
test the LNKS line search algorithm, the effectiveness of the Krylov-Schur preconditioner for
highly nonlinear problems, and the various heuristics we introduced in Section 2. The last
problem is the optimal control of a flow around a wing.

4.1. Finite element approximation error. In this section we use a model problem to
verify the convergence rate estimates given in the previous section. The velocity and pressure
given by

u∗(x, y, z) =
{

1 − (x2 + y2)2, x,−y
}T

, p∗(x, y, z) = x2 + y2 − z2.

satisfy the Navier-Stokes equations. We restrict this solution in a cylindrical domain we
choose some part of its boundary as the control domain Γd. We defined the velocity boundary
conditions on the circumferential walls to be the decision variables. On Γ/Γd we set u = u∗.
The objective function is given by

J (u,ud, p) =
1

2

∫

Ω

(u∗ − u)2 dΩ.

Since the boundary conditions for u, p on Γ/Γd are compatible with (u∗, p∗) the values for
the objective function and the Lagrange multipliers at the minimum are zero.

In Table 4.1 we give convergence rates for the state variables and the Lagrange multipli-
ers. The results are in good agreement with the theoretical predictions. The convergence rate

TABLE 4.1
In this table the convergence rate of the finite element approximation for a matching velocity problem is given.

Here n is the number of elements; h is the cube root of the volume of the maximum inscribed sphere inside a
tetrahedron of the finite element mesh. Near optimal convergent rates can be observed for the state and adjoint
variables.

n h ‖ � ∗ − � h‖0 ‖p∗ − ph‖0 ‖ � ∗ − � h‖0 ‖µ∗ − µh‖0

124,639 0.80 1.34 × 10−4 2.01 × 10−5 3.88 × 10−4 1.76 × 10−5

298,305 0.53 4.40 × 10−5 9.00 × 10−6 1.19 × 10−4 7.90 × 10−6

586,133 0.40 1.70 × 10−5 5.20 × 10−6 5.00 × 10−5 4.50 × 10−6

for the velocities and their adjoints is approximately 2.92 (comparing errors between the first
and second rows) and 2.96 (comparing errors between the second and third rows). For the
pressures and their adjoints the convergence rate is 1.96 and 1.97, respectively.

4.2. Poiseuille flow. The Poiseuille flow is a stable solution of the Navier-Stokes equa-
tions for small Reynolds numbers. We use this example to study the effectiveness of BFGS
as a preconditioner. Since the optimization problem is nonlinear, LNKS takes several itera-
tions and quasi-Newton curvature information can be built up. Quasi-Newton theory predicts
that Bz approaches Wz as the iterates get closer to the solution. Therefore, we expect the
effectiveness of the preconditioner to improve as the optimization algorithm progresses. To
approximate the reduced Hessian we invoke the limited-memory BFGS formula we described
the first paper. In our test we used 30 vectors.

We look at a fixed-size/fixed-granularity problem. The target Reynolds number is 500.
We start at Reynolds number 100 and we use a continuation step ∆Re = 200. The continua-
tion is not used to initialize the state and control variables, but only to carry BFGS information
to the next Reynolds number.
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TABLE 4.2
Work efficiency of the proposed preconditioners for a Poiseuille flow matching problem for fixed size and fixed

granularity as a function of the Reynolds number. Recall that LNKS-I requires two linearized forward solves per
iteration, whereas LINKS-II involves just application of the Schwarz approximation. Re is the Reynolds number;
N/QN denotes the number of outer iterations. The number of iterations for the KKT system is averaged across
the optimization iterations. The problem has 21,000 state equations and 3,900 control variables; results are for 4
processors of the T3E-900. Wall-clock time is in hours.

Re method N/QN iter KKT iter ‖ gz ‖ time
100 QN-RSQP 262 — 1 × 10−4 5.9

LNK 3 186,000 9 × 10−6 7.1
LNKS-I 3 48 9 × 10−6 3.2
LNKS-II 3 4,200 9 × 10−6 1.3

300 QN-RSQP 278 — 1 × 10−4 6.4
LNK 3 198,000 9 × 10−6 7.6

LNKS-I 3 40 9 × 10−6 3.1
LNKS-II 3 4,300 9 × 10−6 1.4

500 QN-RSQP 289 — 1 × 10−4 7.3
LNK 3 213,000 9 × 10−6 9.0

LNKS-I 3 38 9 × 10−6 3.0
LNKS-II 3 4,410 9 × 10−6 1.4

The forward problem preconditioner is given by Equation 4.5 (Part I). In QN-RSQP we
use QMR for the linearized Navier-Stokes operator, preconditioned with an overlapping ad-
ditive Schwarz method with ILU(1) in each subdomain6. Results for a problem with 21,000
state and 3,900 design variables on 4 processors and for a sequence of three Reynolds num-
bers are presented in Table 4.2. The number of KKT iterations in LNKS I reveals the effect of
the BFGS preconditioner. They drop from an average 48 iterations to 38. The effect of BFGS
in LNKS II is hidden since the KKT iterations are dominated from the ill-conditioning of the
forward and adjoint operators (In LNKS I these solves are exact in each iteration). Overall,
we can observe that LNKS reduces significantly the execution time relative to QN-RSQP.

The Newton solver performed well requiring only 3 iterations to converge. In these
problems we did not use inexact Newton’s method with the KKT solves, they were fully
converged at each iteration. No line search was used in the LNKS variants; we used the
l1-merit function for the QN-RSQP.

It is rather surprising that the quasi-Newton works well as a preconditioner for the KKT
system where as it stagnates within the QN-RSQP method. One explanation could be that
the the QN-RSQP in these runs suffered the “Maratos” effect. In our subsequent tests we
switched to a second-order correction method ([19], p.570).

4.3. Flow around a cylinder. All the problems examined so far were useful in verifying
certain aspects of the LNKS method but they are linear or mildly nonlinear. In order to test
LNKS further we study a highly nonlinear problem: that of flow around a cylinder with a
dissipation-type objective function. The cylinder is anchored inside a rectangular duct, much
like a wind tunnel. A quadratic velocity profile is used as an inflow Dirichlet condition and
we prescribe a traction-free outflow. The decision variables are defined to be the velocities
on the downstream portion of the cylinder surface. We have investigated flows in the laminar
steady-state regime. For exterior problems the transition Reynolds number is 40 but for the
duct problem we expect higher Reynolds numbers due to the dissipation from the duct walls.

6For definitions of ILU(0) and ILU(1) see [20].



16 G. BIROS AND O. GHATTAS

(a) (b)

(c) (d)

FIG. 4.1. The top row depicts stream tubes of the flow for Reynolds number 20 and the bottom row for
Reynolds number 40. The left column depicts the uncontrolled flow. The right column depicts the controlled flow.
These pictures depict the flow pattern on the downstream side of the cylinder.

Figures 4.1 and 4.2 illustrate the optimal results for different Reynolds numbers. LNKS
eliminates the recirculation region in the downstream region of the cylinder. In order to avoid
the excessive suction that we observed in the Stokes case, we imposed Dirichlet boundary
conditions on the outflow of the domain. The incompressibility condition prevents the opti-
mizer from driving the flow inside the cylinder7.

Our experiments on the Stokes optimal control established the relation between the per-
formance of the Krylov-Schur iteration and the forward problem preconditioner. Thus before
we discuss results on the LNKS algorithm we give some representative results for the Navier-
Stokes forward solver. We use an inexact Newton’s method combined with the preconditioner
we presented in Part I. A block-Jacobi ILU(0) preconditioner is used for the velocity block
and as well as for the pressure mass matrix (scaled by 1/Re); the latter is used to precondition
the pressure Schur complement block. We would very much like to use an ILU(1), as we did
for the Poiseuille flow case, but memory limitations8 prevented us from doing so.

7When Dirichlet conditions are specified everywhere on Γ, then �
Γ

� · � dΓ should be zero. The constraint
needs to either be imposed explicitly, or with implicitly by using a proper function space. In our implementation we
use a penalty approach by modifying the objective function.

8In our Navier-Stokes implementation, we store the state operator, the Hessian of the constraints and the Hessian
of the objective. PSC’s T3E-900 (where the majority of our runs took place), has only 128MB of memory per
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(a) (b)

(c) (d)

FIG. 4.2. The top row depicts stream tubes of the flow for Reynolds number 20 and the bottom row for Reynolds
number 40. The left column depicts the uncontrolled flow. The right column depicts the controlled flow. The decision
variables are Dirichlet boundary conditions for the velocities on the downstream half of the cylinder surface. Here
we see the flow from the upstream side of the cylinder. In (c) we can clearly identify the two standing vortices formed
on the lower left corner of the image.

TABLE 4.3
Forward solver efficiency in relation to problem size and the Reynolds number for a 3D flow around a cylinder.

PEs is processor number; n is the problem size; (Re) is the Reynolds number; qmr is the number of aggregate Krylov
iterations required to satisfy ‖ � ‖/‖ � 0‖ ≤ 1 × 10−7; nw is the number of Newton steps to satisfy ‖ � ‖/‖ � 0‖ ≤

1 × 10−6; and t is time in seconds. The runs were performed on a T3E-900.

Re = 20 Re = 30 Re = 60

PEs n qmr nw t qmr nw t qmr nw t
32 117.048 2,905 5 612 3,467 7 732 2,850 6 621
64 389,440 4,845 5 1,938 5,423 7 2,101 5,501 7 2,310

128 615,981 6,284 5 2,612 8,036 8 3,214 7,847 7 3,136

Table 4.3 gives statistics for three different Reynolds numbers and for three different
problem sizes. We report the (aggregate) number or Krylov iterations required to converge
the Newton solver, the number of Newton iterations, and the total execution time. For these

processor.
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runs we did not use continuation, but we did use an inexact Newton method. Comparing with
Table 4.1 (Part I) we observe that the time for a forward solve has increased almost sixfold.
However the time per iteration is roughly the same with that of the linear, Stokes case. For
example, in the 128 processor problem and for Reynolds number 30, the average (Krylov)
iteration count is 1005, whereas in the linear case it is 882. Similarly, the average time per
Newton step is 401 seconds. The time for the Stokes solver is little higher, 421 seconds9. We
can conclude that the forward preconditioner performs reasonably well.

Table 4.4 shows results for 32, 64, and 128 processors of a T3E-900 for increasing prob-
lem sizes. Results for two different preconditioning variants of LNKS are presented: the
exact (LNKS-I) and inexact (LNKS-II) version of the Schur preconditioner. The globalized

TABLE 4.4
The table shows results for 32, 64, and 128 processors of a Cray T3E for a roughly doubling of problem size.

Results for the QN-RSQP and LNKS algorithms are presented. QN-RSQP is quasi-Newton reduced-space SQP;
LNKS-I requires two exact solves per Krylov step combined with 2-step-stationary-BFGS preconditioner for the
reduced Hessian; in LNKS-II the exact solves have been replaced by approximate solves; LNKS-II-TR uses a
truncated Newton method and avoids fully converging the KKT system for iterates that are far from a solution. time
is wall-clock time in hours on a T3E-900. Continuation was used only for Re = 60.

Re = 30

states
controls method N or QN iter KKT iter time

117,048 QN-RSQP 161 — 32.1
2,925 LNKS-I 5 18 22,8

(32 procs) LNKS-II 6 1,367 5,7
LNKS-II-TR 11 163 1.4

389,440 QN-RSQP 189 — 46.3
6,549 LNKS-I 6 19 27.4

(64 procs) LNKS-II 6 2,153 15.7
LNKS-II-TR 13 238 3.8

615,981 QN-RSQP 204 — 53.1
8,901 LNKS-I 7 20 33.8

(128 procs) LNKS-II 6 3,583 16.8
LNKS-II-TR 12 379 4.1

Re = 60

states
controls preconditioning Newton iter average KKT iter time (hours)

117,048 QN-RSQP 168 — 33.4
2,925 LNKS-I 6 20 31,7

(32 procs) LNKS-II 7 1,391 6,8
LNKS-II-TR 11 169 1.5

389,440 QN-RSQP 194 — 49.1
6,549 LNKS-I 8 21 44.2

(64 procs) LNKS-II 7 2,228 18.9
LNKS-II-TR 15 256 4.8

615,981 QN-RSQP 211 — 57.3
8,901 LNKS-I 8 22 45.8

(128 procs) LNKS-II 8 3,610 13.5
LNKS-II-TR 16 383 5.1

LNKS algorithm is compared with QN-RSQP. In LNKS-II-TR we activate the inexact New-
ton method. In this example we have used continuation to warm start the Re = 60 problem.

9The reason for this is related to the scaling between the velocity and pressure block of the forward problem.
Increasing the Reynolds number improves this scaling and thus improves the eigenvalue distribution. Of course this is
true up to certain Reynolds number. For higher values the Jacobian becomes highly unsymmetric and ill-conditioned.
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The reduced Hessian preconditioner is a combination of the BFGS and 2-step preconditioners
(as we described in Part I, Section 3.2). In the line search we use the augmented Lagrangian
merit function.

In this problem, QN-RSQP did converge, but only after 48 hours. LNKS-I, although
faster, does not reduce the required time significantly. LNKS-II does better—4 to 5 times
faster than QN-RSQP.

The most noticeable finding in Table 4.4 is the dramatic acceleration of the LNKS algo-
rithm which is achieved by using LNKS-II-TR—the inexact version of the Newton method.
The inexactness did not interfere at any point with the merit function and in all cases we
observed quadratic convergence. Overall LNKS-II-TR runs more than 10 times faster than
QN-RSQP. This is in agreement with the performance improvements we observed with the
Stokes equations.

Undoubtedly the external cylinder flow problem is highly nonlinear. The augmented
Lagrangian globalization performed robustly and we did not have problems converging the
equations. Not once did the QN-RSQP safeguard get activated—triggered from a negative
curvature direction. Finally, it is worth noting that the optimization solution is found at a
cost of 5 to 6 flow simulations—remarkable considering that there are thousands of control
variables.

4.4. Flow around a Boeing 707 wing. For our last test we solved for control of a flow
around a Boeing-707 wing. In this problem the control variables are the velocities (Dirichlet
conditions) on the downstream half of the wing. The Reynolds number (based on the length
of the wing root) was varied from 100 to 500 and the angle of attack was fixed at 12.5 degrees.
The problem size in this example is 710,023 state variables and 4,984 control variables.

Table 4.5 summarizes the results from this set of experiments. The main purpose of this
analysis is to compare continuation with the other globalization techniques. In addition we
employ the double inexactness idea, that is, we solve inexactly in both the continuation loop
and the Lagrange-Newton loop. It is apparent that in this problem continuation is crucial.

TABLE 4.5
In this table we present results for the wing flow test case. The size of this problem is 710,023 state and 4,984

decision variables. The runs were performed on 128 processors on a T3E-900. Here Re is the Reynolds number;
iter is the aggregate number of Lagrange-Newton iterations—the number in parenthesis is the number of iteration in
the last step; time is the overall time in hours; qn is the number of QN-RSQP steps—the number in parenthesis gives
how many times a negative curvature was detected; minc is the number of non-monotone line search iterations—
in parenthesis is the number of times this heuristic failed. The globalized LNKS-II-TR algorithm is used. The
Lagrange-Newton solver was stopped after 50 iterations. In the last column Re × ∆f gives the reduction of the
objective function (with the respect the uncontrolled flow). “no cont” means that continuation was not activated.

Re iter time qn minc ‖g + AT � ‖ ‖c‖ Re × ∆f
100 no cont 19 4.06 2 4 9 × 10−6 9 × 10−6 4.065

cont
200 no cont 39 7.8 6(1) 2 9 × 10−6 9 × 10−6 5.804

cont 20(10) 4.6 0 3 9 × 10−6 9 × 10−6 5.805
300 no cont 48 11.8 16(3) 0 9 × 10−6 9 × 10−6 6.012

cont 29(11) 6.4 0 2 9 × 10−6 9 × 10−6 6.016
400 no cont 50 13.6 40(3) 0 2 × 10−4 3 × 10−3 3.023

cont 33(11) 7.36 0 6(1) 9 × 10−6 9 × 10−6 8.345
500 no cont 50 16.7 42(5) 0 4 × 10−2 9 × 10−2 1.235

cont 39(14) 9.09 1 5(1) 9 × 10−6 9 × 10−6 10.234

For Reynolds numbers larger than 300, LNKS was forced to early termination (we set the
Lagrange-Newton iteration bound to 50). In the last row (Re = 500) and when we did not
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(a) (b)

(c) (d)

FIG. 4.3. The left column depicts streamlines of the uncontrolled flow. The right column depicts streamlines of
the controlled flow. Top row gives a side snapshot of the flow; bottom row gives a front view. The Reynolds number
(based on the length the root of the wing) is 500.

use continuation, LNKS ends up switching to a QN-RSQP step 42 times out of a total of 50
iterations; 5 times a negative curvature direction was detected.

As a result LNKS was terminated without reaching the convergence criteria. Further-
more, the small reduction in the objective function and the residuals (last three columns)
indicate small progress at each optimization step. Notice that in these examples we did not
activate backtracking in the continuation parameter.

(It could be argued that a reason the algorithm stagnated was the early termination of
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(a) (b)

(c) (d)

FIG. 4.4. The left column depicts streamlines of the uncontrolled flow. The right column depicts streamlines
of the controlled flow. Top row gives a snapshot of the flow from below; bottom row gives a back view. Reynolds
number is 500. We can clearly identify the wing tip vortices on the left, with non-slip boundary conditions on the
wing. These vortices are directly associated to the lift. The images on the right column depict the flow with the wing
boundary conditions modified by the optimizer; the vorticity is eliminated. So is the lift.

the Krylov-Schur solver—because of the inexactness. We did not conduct exhaustive ex-
periments to confirm or reject this claim. However, our experience on numerous problems
suggests that it is the ill-conditioning and nonlinearity of these problems that leads to stagna-
tion and not the inexactness. In our tests (systematic or during debugging and development) it
was never the case that a run with exact solves converged in reasonable time, and the inexact
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FIG. 4.5. Snapshot of the (Dirichlet control) velocity field on the wing.

version did not. On the contrary, inexactness significantly reduced execution times.)
On the other hand, when we used continuation (fairly large steps on the Reynolds num-

ber), the algorithm successfully converged after 39 Lagrange-Newton iterations. Switching
to QN-RSQP was required just once. In the minc column of Table 4.5 we monitor the non-
monotone line search criterion. Recall that if the merit function line search on the LNKS step
fails, we perform a line search with a different merit—the KKT residual (i.e. the first order
optimality conditions). If the step gets accepted, via backtracking, we use it as an update
direction. Eventually, we insist that the (augmented Lagrangian) merit gets reduced. This
strategy was very successful 20 times and it failed only twice10.

Finally we conclude with some comments on the physics of this problem. Figures 4.3
and 4.4 depict snapshots of the uncontrolled and controlled flow for Reynolds number 500.
The wing-tip vortices are eliminated by the optimizer. But at what cost? Figure 4.5 shows
a snapshot of the (scaled) control variables—the velocity boundary conditions. It is obvious
that the optimizer designed a perforated wing, which means a significant reduction in lift.
This plane will never leave the ground! (Additional inequality constraints on the lift can be
treated within the framework of LNKS with interior point methods.)

5. Conclusions. In the second part of the paper we presented the algorithmic compo-
nents of the outer (Newton) solver and we studied the application of the LNKS method to a
set of different optimal flow control problems. Our tests demonstrate the effectiveness and
scalability of the LNKS method in PDE-constrained optimization. The Krylov-Schur precon-
ditioner maintained its effectiveness; the Lagrange-Newton method exhibited the well known
mesh-independence convergence properties. Inexact Newton steps dramatically accelerated
the algorithm and continuation ensured global convergence.

The results reveal at least an order of magnitude improvement in time over popular quasi-
Newton methods, rendering tractable some problems that were out of reach previously. In-

10In general, using the residual of the KKT conditions to test a step can compromise robustness since the opti-
mizer could get trapped to a saddle point or a local maximum.
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deed, the optimum is often found in a small multiple of the cost of a single simulation.
The LNKS algorithm is more suitable for steady PDE constraints. Although the method

is in principle applicable to time-dependent problems it is not a recommended approach for
3D problems. The adjoint problem is a final value problem that requires the velocity history,
and this requires large amount of memory. We are investigating various ways to circumvent
this problem. Another important extension of LNKS is the treatment of inequality constraints
via interior point methods.

We believe that the LNKS method is a very powerful tool. For this reason we decided
to direct effort at developing a code that will be usable by the scientific community. In
a forthcoming paper we will discuss Veltisto, a PETSc-based library for large-scale, PDE-
constrained optimization on parallel computers.
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