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Abstract. We present a multigrid algorithm for the solution of distributed parameter inverse problems con-
strained by variable-coefficient linear parabolic partial differential equations. We consider problems in which the
inversion variable is a function of space only; for stability we use an L2 Tikhonov regularization. The main feature
of our algorithm is that its convergence rate is mesh-independent—even in the case of no regularization. This feature
makes the method algorithmically robust to the value of the regularization parameter, and thus, useful for the cases
in which we seek a high-fidelity reconstruction.

The problem is formulated as a PDE-constrained optimization. We use a reduced space approach. We eliminate
the state and adjoint variables and we iterate in the inversion parameter space using Conjugate Gradients. We
precondition with a V-cycle multigrid scheme. The multigrid smoother is a two-step stationary iterative solver that
inexactly inverts an approximate Hessian by iterating exclusively in the high-frequency subspace (using a high-
pass filter). We analyze the performance of the scheme for the constant coefficient case with full observations;
we analytically calculate the spectrum of the reduced Hessian and the smoothing factor for the multigrid scheme.
The forward and adjoint problems are discretized using a backward-Euler finite-difference scheme. The overall
complexity of our inversion algorithm isO(NtN + N log2 N), where N is number of grid points in space and Nt

is the number of time steps.
We provide numerical experiments that demonstrate the effectiveness of the method for different diffusion co-

efficients and values of the regularization parameter. We also provide heuristics, and conduct numerical experi-
ments for the case with variable coefficients, and partial observations. We observe the same complexity as in the
constant-coefficient case. Finally, to avoid exact forward and adjoint solves far from the minimum, we combine the
reduced-space algorithm with a full-space method.
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1. Introduction. In this paper we present multigrid algorithms for inverse problems
constrained by parabolic partial differential equations (PDEs). As a model problem we con-
sider the one-dimensional heat equation. The inversion parameter is a heat source, which we
try to reconstruct given full or partial observations of the temperature. Our method is designed
for problems in which the temporal variation of the heat source is known, but the spatial varia-
tion is not. Our model is motivated by inverse medium and data assimilation problems that are
constrained by reaction-convection-diffusion equations. We use an an infinite-dimensional
PDE-constrained optimization formulation [5]. Although we consider only the 1D case, our
algorithmic choices are designed for large-scale three-dimensional problems.

More precisely, we seek to reconstruct an unknown function u(x) by solving the follow-
ing minimization problem:

min
y,u
J (y, u) :=

1
2

∫
Ω

∫
T

(y(x)− y(x)∗)2 d Ωd t +
β

2

∫
Ω

u(x)2 d Ω,

subject to:

∂y(x)
∂t

− ν∆y(x) = a(x, t)y(x) + b(x, t)u(x) in D, y = 0 on ∂Ω, y(x, 0) = 0 in Ω,
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where D is defined as Ω × (0, T ]. Here, y is the state variable, u is the inversion variable,
ν > 0 is the diffusion coefficient, and β ≥ 0 is the regularization parameter. The objective
is to reconstruct u by minimizing the misfit between the observed state y∗ and the predicted
state y. We assume that both a(x, t) and b(x, t) are known, smooth, and bounded functions.1

By forming a Lagrangian, introducing the adjoint variables λ, and by requiring station-
arity with respect to the state, inversion, and adjoint variables, we arrive at the the first-order
optimality conditions:
State

∂y

∂t
− ν∆y − ay − bu(x) = 0 in D, y = 0 on ∂Ω, y(x, 0) = 0 in Ω.

Adjoint

−∂λ

∂t
− ν∆λ− aλ + (y − y∗) = 0 in D, λ = 0 on ∂Ω, λ(x, T ) = 0 in Ω.

Inversion

βu−
∫

T

bλ d t = 0 in Ω.

The above system of equations is also known as the Karush-Kuhn-Tucker optimality system
or the “KKT” system. The corresponding linear operator can be written as I 0 − ∂

∂t − ν∆− a

0 βI −
∫ T

0
b

∂
∂t − ν∆− a −b 0

 =

 Q 0 JT

0 βI CT

J C 0

 . (1.1)

The KKT operator corresponds to a symmetric saddle point problem. For an excellent review
on linear solvers for such problems, we refer the reader to [6]. In this paper we will consider
two methods, the so-called “full space” and “reduced space” [15]. In full space methods one
solves directly (1.1), for example, using a Krylov iterative method. In reduced space methods
one solves for u by an iterative solver on the the Schur complement of u. To derive the Schur
complement, we first eliminate y and λ using the state and adjoint equations respectively, and
then we substitute λ in the inversion equation. In this way we obtain

Hu = g. (1.2)

The “reduced Hessian” H (or just “Hessian”) is defined by H = CT J−T QJ−1C +βI .
Since Q is positive semi-definite, H is a symmetric and strictly positive definite operator. The
reduced gradient g is defined by g = −CT J−T Qy∗. We focus our attention to the design
of efficient solvers for reduced space formulations. For completeness we include an example
that shows how we can combine full and reduced space approaches.

Related work. Reduced space methods are quite popular because one can iterate on the
adjoint and state equation in sequence, they require less storage, and the Conjugate Gradients
method (CG) can be used to invert H . The KKT matrix (1.1), is indefinite, ill-conditioned,
and its size is more than twice as large as that of the forward problem. Most implementa-
tions avoid using H and instead use some approximation, for example, quasi-Newton. Such
approaches however, are not algorithmically scalable [1]. If H is to be used, direct solvers
are not a viable option since the reduced Hessian is a non-local and thus, dense operator. The

1In the following we suppress the notation for the explicit dependence on x and t.
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Preconditioned Conjugate Gradients (PCG) algorithm requires matrix-vector product (here-
inafter, “matvec”) operations only, and thus, can be used to solve (1.2).

If we fix the regularization parameter β to a positive value we can show that H is a com-
pact perturbation of the identity and thus, has a bounded (mesh-independent) condition num-
ber: it scales as O(1/β). Using CG to solve a linear system involving H requires O(1/

√
β)

iterations. Therefore, the overall scheme does not scale with vanishing β. We claim that in
mesh refinement studies and scalability analyses for inverse problem solvers, having a fixed
value of β can lead to wrong conclusions.

There are two reasons that drive the need to solve problems in refined meshes. The first
reason is the need to resolve the forward and adjoint equations. In that case one can use a
mixed discretization in which u is discretized in a coarser grid, or one can use a large value for
β. In the second case, which is pertinent to scalability of the inverse problem solver, we have
high-quality observations2 that allow for a high-resolution reconstruction of u. This implies
that β cannot be fixed as we refine the mesh because we will not be able to recover the sought
frequencies. Obtaining a mesh-independent scheme for vanishing β, to our knowledge, has
not been addressed.

Returning to the reduced Hessian, we observe that the deterioration of the condition
number with decreasing β suggests the need for a preconditioning scheme. We cannot use
standard preconditioning techniques like incomplete factorizations or Jacobi relaxations, as
these methods need an assembled matrix [4]. In [7] a two-step stationary iterative method
that does not need an assembled matrix was used to precondition the reduced Hessian. (The
two-step method will be the smoother in our scheme.)

Another alternative is to use multigrid methods. These methods have been developed
mainly for linear systems arising from the discretization of elliptic and parabolic PDEs. The
basic idea of multigrid is to accelerate the iterative solution of a PDE by computing correc-
tions on a coarser grid and then interpolating them back to the original grid. The three impor-
tant steps of multigrid scheme are pre-smoothing, coarse-grid correction and post-smoothing.
Smoothing is equivalent to taking a few iterations of an iterative method (“smoother”) that
should selectively remove the high-frequency error components faster than low-frequency
components. Besides the pioneering work of [12] for differential operators, and of [19] for
second-kind Fredholm integral operators, there exists significant work on multigrid methods
for optimal control problems. For example see the work of [2] and [15] for a general discus-
sion, and [9] and [10] for distributed control problems constrained by parabolic PDEs. An
alternative to multigrid is domain decomposition; a promising work for problems similar to
ours can be found in [21]. There the author proposes a space-time Schur domain decomposi-
tion preconditioner for the KKT system. A nice feature of that method is that it can be readily
parallelized in time. The context however, is optimal control and not inverse problems: the
value of the regularization parameter is quite large.

In our case, the unregularized reduced Hessian is a Fredholm operator of the first kind.
There has been little work on multigrid algorithms for such problems. In [20] multilevel and
domain decomposition preconditioners were proposed for integral equations of first-kind.
Multigrid solvers for Tikhonov-regularized ill-posed problems were discussed in [27] and
[26]. Such problems were further analyzed in [24] and [25]. A multigrid preconditioner
based on that work was also used in [1] to solve problems with million of inversion param-
eters. All these methods however, require a relatively small but non-vanishing value of the
regularization parameter. As we will discuss later in the paper, the methods described in [1]
and [10] do not scale well in the case of a mesh-dependent regularization parameter.

2If the data is not in the range of the inversion operator, e.g., due to noise, vanishing data will result in blow up
for u.
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Contributions. Our main contribution is to derive a method for which we obtain a mesh-
independent and β-independent convergence rate—including the case of β = 0. We design
special smoothers that are used to built multigrid schemes for (1.2).

There are several challenges in designing multigrid schemes for the reduced space. As
we mentioned, we have to design a matrix-free smoother with no access to diagonal or off-
diagonal terms of the Hessian operator. The reduced Hessian (with β = 0) is a compact
operator. Its dominant eigenvalues correspond to low-frequency components and for such
operators standard smoothers fail. Finally, every matrix-vector multiplication with the re-
duced Hessian is equivalent to a forward and an adjoint solve; hence, it is important to design
algorithms that require a minimum number of matvecs in the fine grid.

We first propose a multigrid solver that uses a CG smoother combined with an approxi-
mate filtering operator that restricts the CG iterations in the high-frequency Krylov subspace.
We show numerical results that indicate good behavior. The method is easy to implement,
but difficult to analyze. For this reason we propose a second smoother that is more expensive
but for which we can provide complexity estimates.

The main components of the proposed algorithm are: (1) a reduced Hessian that is a
composition of spectral filtering with an approximate Hessian operator based on inexact
forward and adjoint solves; and (2) a smoothing scheme that uses a stationary second-order
method targeted in the high-frequency components of u. It is crucial that the effectiveness
of the smoother in the high-frequency regime is mesh independent; our method fulfills this
requirement. The multigrid scheme (a V-cycle) can be used as solver or as a preconditioner
for a Krylov iterative method.

The forward and adjoint problem are discretized using a backward-Euler scheme in time,
and a standard three-point Laplacian (Dirichlet BCs) in space. We conduct numerical ex-
periments to test (1) the effects of semi-coarsening (only space coarsening) and standard-
coarsening; (2) different smoothing techniques; and (3) the effects of using non-Galerkin
coarse-grid operators. We analyze and experimentally measure convergence factors. Also,
we present results for the more general case in which multigrid is used as a preconditioner
and not as a solver. In addition, we test the algorithm for the case of variable coefficients
(resembling reaction-diffusion equations that admit traveling wave solutions) and partial ob-
servations. Finally, we include a discussion on full-space methods and we propose a multigrid
scheme for (1.1) along with numerical results that illustrate its performance.

1.1. Organization of the paper. In Section 2 we derive the spectral properties of the
analytic and discretized reduced Hessian for the case of constant coefficients. In Section
3 we discuss multigrid and we give details on the coarse-grid operator. In Section 3.2 we
discuss standard smoothers and present construction of novel smoothers based on the idea of
subspace decomposition; in Section 4, we present appropriate preconditioners so that PCG
can be used as a smoother. Numerical results on this approach are presented in Section 4.1.
In Section 5, we present our main contribution, a multigrid variant which based on exact
subspace projections, and we present results for both the constant and variable coefficient
case. Finally, in Section 6 we discuss full space methods.

2. Spectral properties of the reduced Hessian. We start by calculating the spectrum
of the reduced Hessian. We show that in its general form, the source inversion is an ill-
posed problem with algebraically decaying eigenvalues. Let K be the Green’s operator for
the forward problem, so that K maps functions from the inversion variable space to the state
variable space. Using K, we can eliminate the constraint and obtain an unconstrained varia-
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tional problem for u:

min J̃ (u) =
1
2

∫
Ω

∫
T

(Ku− y∗)2 d Ωd t +
β

2

∫
Ω

u2 d Ω. (2.1)

Taking variations of (2.1) with respect to u we get an Euler-Lagrange equation for u:

∂J̃
∂u

û =
∫

Ω

∫
T

KT (Ku− y∗)û d Ωd t + β

∫
Ω

uû d Ω = 0,∀û, (2.2)

where KT is the adjoint of K. Then the strong form of the optimality conditions is given by(
KT K + βI

)
u = KT y∗ or Hu = KT y∗, (2.3)

where H is the reduced Hessian. If a = 0 then K (for homogeneous Dirichlet boundary
conditions) is given by

y =
∫

Ω

∫ t

0

k(x− y, t− τ)b(x, t)u(x) d yd τ

= 2
∞∑

k=1

∫
Ω

∫ t

0

e−k2π2(t−τ)Sk(x)Sk(y)b(x, t)u(x) d yd τ, (2.4)

where Sk(x) = sin(kπx). If we assume that b = 1(t), expand u(x) =
∑∞

j=1 ujSj(x), and
use orthogonality we get

y =
∞∑

k=0

Sk(x)yk(t), with yk(t) =
∫ t

0

e−k2π2(t−τ)1(τ)uk dτ. (2.5)

The adjoint operator KT is given by

λ(x, T − t) = KT z =
∫

Ω

∫ t

0

k(x− y, t− τ) z(y, T − τ) d yd τ. (2.6)

Using (2.5) and (2.6) in (2.3), and setting β = 0, the eigenvalues (σk) and eigenvectors (vk)
of the reduced Hessian (H = KT K) are given by

σk =
2k2π2T + 4e−k2π2T − 2e−2k2π2T − 3

2k6π6
and vk = Sk. (2.7)

If we discretize in space using the three-point Laplacian approximation, the correspond-
ing eigenvalues and eigenvectors of the reduced Hessian (Hh) are given by

σk =
2λkT + 4e−λkT − 2e−2λkT − 3

2λ3
k

and vk = Sh
k , (2.8)

where λk = 4νN2 sin2( kπ
2N ) is the kth eigenvalue of the discrete Laplacian and ν is the diffu-

sion coefficient. The discrete sine function is represented by Sh
k with N being discretization

size. If we use a backward Euler scheme for time the eigenvalues of the discrete reduced
Hessian (Hh) are given by

σδ
k = δ3

Nt∑
j=1

Nt−j∑
l=0

∑l+j−1
r=0

1
(1+λkδ)r

(1 + λkδ)l+1
, (2.9)
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FIG. 2.1. Effect of regularization on the spectrum of the reduced Hessian. Here we report the Spectrum
of eigenvalues (σ) of the reduced Hessian H for ν = 1.0 and T = 1. Three cases of regularization parameter
β = σmin, 256σmin, 4096σmin are plotted. The right plot shows the spectrum of H for three different diffusion
coefficients ν = 1, 0.01, 0.0001.

TABLE 2.1
Eigenvalues, eigenvectors of Laplacian and reduced Hessian. The kth eigenvalue and eigenvector of the

operator are represented by σk and vk respectively. The diffusion coefficient and total time interval are ν and T
respectively. Here Sk = sin(kπx). Discrete operators and functions are denoted with a superscript h.

Operator σk vk

−ν∆ λk = νk2π2 Sk

−ν∆h λh
k = 4νN2 sin( kπ

2N ) Sh
k

H σk = 2λkT+4e−λkT−2e−2λkT−3
2λ3

k
Sk

Hh σk = 2λh
kT+4e−λh

k T−2e−2λh
k T−3

2(λh
k)3

Sh
k

Hh,δ σδ
k = δ3

∑Nt

j=1

∑Nt−j
l=0

Pl+j−1
r=0

1
(1+λkδ)r

(1+λkδ)l+1 Sh
k

where Nt is the number of time steps and δ the time step.
From (2.7) and (2.8) it is evident that k → ∞ ⇒ σk → 0. Furthermore σmax ≈ T

(λk)2 ,
for a large-enough time-horizon T . If β 6= 0 then σmin = β and the condition number of
the reduced Hessian is given by κ = σmax+β

β and it is bounded. For small β, however, the
reduced Hessian is a highly ill-conditioned operator (see Figure 2.1).

TABLE 2.2
CG mesh-dependence. Here we report the performance of CG as a function of the mesh size and the value

of the regularization parameter. The number of CG iterations does not change with an increase in the problem size
Ns; β is the regularization parameter and in parentheses the number of recovered frequencies; iters corresponds to
number of CG iterations for a relative residual reduction ‖r‖/‖r0‖ ≤ 10−12; and maximum number of iterations
is 2Ns. Two cases of regularization parameter are considered: β = σ20 and β = σ100. Additional parameters
used in this numerical experiment are ν = 1, T = 1. One observes that the number of CG iterations are mesh-
independent only in the case of constant β.

Ns β (σ > β) iters
512 6e-08 (19) 1e-10 (99) 69 725
1024 6e-08 (19) 1e-10 (99) 70 781
2048 6e-08 (19) 1e-10 (99) 68 763
4096 6e-08 (19) 1e-10 (99) 71 713



MULTIGRID FOR INVERSE PROBLEMS WITH PARABOLIC PDES 7

The number of CG iterations required for convergence is proportional to the square root
of the condition number of the underlying operator. Therefore, for mesh-independent condi-
tion number, we obtain a mesh-independent number of iterations. It may be the case however,
that the data fidelity allows quite small regularization parameter.

In Table 2.2 we report results from a numerical experiment in which we study the number
of CG iterations for two cases of the regularization parameter. One can observe that for
constant β the the number of iterations is mesh-independent. This is not the case when β
is related to the mesh size. The goal of the present work is to use multigrid ideas to address
problem of β-independence number of CG iterations, at least for the source inversion problem
for the heat equation.

3. Reduced space multigrid. In this section we summarize the algorithmic issues re-
lated to multigrid for the reduced Hessian. Here, and in the rest of the paper, we use the
superscript h to denote the fine discretization level, and 2h the coarse level—in the case of
a two-grid scheme. For example, we denote the discrete reduced Hessian at resolution h by
Hh. The key steps of a multigrid algorithm for Hhuh = gh are given in Algorithm 1. The re-

Algorithm 1 Multigrid (MG)
1: Pre-smoothing: Smoother iterations on Hhuh = gh

2: Restriction:rh = gh −Hhuh and r2h = I2h
h rh

3: Coarse-grid correction: Solve H2he2h = r2h

4: Prolongation: eh = Ih
2he2h

5: Update: uh ← uh + eh

6: Post-smoothing Smoother iterations on Hhuh = gh

striction (I2h
h ), prolongation (Ih

2h) and coarse grid (H2h) operators are important components
that determine the performance of the algorithm. In Table 3.1 we summarize the spectra of
several restriction and prolongation based operators. Key in a multigrid scheme is to that each

TABLE 3.1
Spectral properties of the restriction and prolongation operators. Let sk = sin2( kπx

2
), ck = cos2( kπx

2
)

and Sk = sin(kπx) for 1 ≤ k ≤ N−1. I2h
h : Ωh → Ω2h, Ih

2h: Ω2h → Ωh and I− Ih
2hI2h

h : V h → W 2h where
V h is the fine space and W 2h is the space containing high frequency components. Sh

k , S2h
k are the eigenfunctions

of the discrete Laplacian and the reduced Hessian in Ωh and Ω2h respectively. 1 ≤ k ≤ N
2

for all the rows in the
Table.

Operator Input function Output function
I2h
h Sh

k ckS2h
k

I2h
h Sh

N−k −skS2h
k

Ih
2h S2h

k ckSh
k − skSh

N−k

I− Ih
2hI2h

h Sh
k (1− c2

k)Sh
k + ckskSh

N−k

I− Ih
2hI2h

h Sh
N−k (1− s2

k)Sh
N−k + ckskSh

k

grid level the majority of the work is in removing errors associated with high-frequencies (at
the specific grid level). In addition as we move into the grid hierarchy, errors should not be
reintroduced or amplified. The problems we are discussing here are pretty regular so pro-
longation and restriction do not present particular challenges. Below we first discuss the
coarse-grid operator representation and then we discuss smoothing techniques.

3.1. Coarse-grid operator. There are two main ways to define the coarse-grid operator,
given a grid-hierarchy, the Galerkin and the direct discretization. Using a variational principle
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and provided that I2h
h = cIh

2h
T , the “Galerkin” coarse-grid operator operator is defined by

H2h
G = I2h

h HhIh
2h,

where H2h
G and Hh are the Galerkin coarse-grid operator and fine grid operators respectively

[13]. Another way of defining the coarse-grid operator is by discretizing directly the forward
and adjoint problems in the coarse grid:

H2h = (CT J−T )2hQ(J−1C)2h.

In the classical multigrid theory for the Laplacian operator on regular grids with constant-
coefficients there is no difference between the two coarse-grid operators. In the case of re-
duced Hessian, however, they are quite different—especially in the high-frequency region of
the coarse space (Figure 3.1). The difference in the spectra can be explained from the scaling
of the eigenvalues of Hh due to the eigenstructure of the standard restriction and prolonga-
tion operators (Table 3.1). Therefore, error components in certain intermediate eigenvector
directions of the fine grid spectrum cannot be recovered if we use H2h. So it is preferable to
use the Galerkin coarse-grid operator for robustness and easily provable convergence. On the
other hand every Galerkin coarse-grid matvec requires a fine-grid reduced Hessian matvec
which makes it computationally expensive. Therefore, we avoid using H2h

G and use H2h.

10
0
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1
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2
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−2

eigenvector

ei
ge

nv
al

ue

I
h
2h Hh I

2h
h  vs H2h

I
h
2h Hh I

2h
h

H2h

FIG. 3.1. Spectrum of the coarse-grid reduced Hessian. Here we depict the difference between the Galerkin
I2h
h Hh Ih

2hand the direct discretization of the reduced Hessian operators. We observe that H2h does not satisfy
the Galerkin condition, and thus, inverting it will not eliminate the low frequency components of the error. Due to
this fact we use multigrid as a CG preconditioner.

3.2. Smoothers. Classical smoothing schemes for the elliptic PDEs include iterative
methods like Jacobi, Gauss-Seidel and CG. A common characteristic of these methods is that
they remove error components corresponding to large eigenvalues faster than error compo-
nents corresponding to small eigenvalues.3 This property makes these methods favorable for
elliptic operators that have large eigenvalues for high frequency eigenvectors. In our case,
the (unregularized) reduced Hessian is a compact operator and behaves quite differently. As
shown in Figure 2.1, large eigenvalues of the reduced Hessian are associated with smooth
eigenfunctions and small eigenvalues are associated with rough or oscillatory eigenfunctions.

3CG works on both ends of the spectrum, but this is not so important in our context.
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Therefore, the above smoothing methods act as roughers. In addition, we do not have di-
rect access to the entries of the reduced Hessian matrix so there is no cheap way to apply
smoothers like Jacobi or Gauss-Seidel.

We discuss in a greater detail why CG cannot be used as a smoother. Using (2.7) we
will show that CG cannot be used as a smoother for this problem as it acts on the high energy
(large eigenvalues) smooth components and acts as rougher instead. We neglect the expo-
nential terms as they go to zero very fast. Let β = 0 and T = π4, then the kth eigenvalue
of the reduced Hessian is σk = 1

k4 . At the ith iteration, CG constructs an (i − 1)th degree
polynomial to minimize ‖e(i)‖H . Therefore the error at the ith iteration can be expressed as
e(i) = Pi(σ)e(0), where Pi(σ) is the (i− 1)th degree polynomial, e(0) is the initial error and
e(i) is the error at ith iteration. Pi(σ) is given by Chebyshev polynomials, where the Cheby-
shev polynomial Ti(ω) of degree i is Ti(ω) = 1

2

[
(ω +

√
ω2 − 1)i + (ω −

√
ω2 − 1)i

]
, [28].

The polynomial Pi(σ) is given by

Pi(σ) =
Ti

(
σmax+σmin−2σ

σmax−σmin

)
Ti

(
σmax+σmin

σmax−σmin

) .

We have already seen that the reduced Hessian is a compact operator. Thus, neglecting
σmin (σmin � σmax) gives Pi(σk) = Ti

(
1− 2

k4

)
. Without loss of generality, we can

assume that the initial guess has error components in all the eigenvector directions. Notice
that Pi(σk) is the amount of attenuation of the kth eigenvector at the ith CG iteration. For
high-frequency error components Pi(σk) ≈ Ti(1) = 1; for small k ≈ Pi(σk) = 0.5. Thus,
amplitude reduction of low frequency error components is greater than that of high frequency
error components: CG can not be used as a smoother in the present problem.

This motivates a modification of the Hessian operator so that the low-frequency spec-
trum is screened out from CG. In this regard, we discuss construction of smoothers based
on the idea of decomposing the finite-dimensional space into relatively high-frequency and
low-frequency subspaces given in [27], [26]. This idea was further studied in [24], [25]. Sim-
ilar ideas of using the subspace decomposition are also used in the construction of efficient
preconditioners in [18].

Our preconditioners will be based on a fine-coarse grid decomposition of the reduced
Hessian. The “coarse” space V 2h is embedded into the “fine” space V h. By Ph : V h → V 2h

we denote the L2-orthogonal projection, and by I − Ph : V h → W 2h the projection to high
frequency functions W 2h. We decompose v ∈ V h into a smooth component vs ∈ V 2h, and
an oscillatory component wo ∈W 2h. Then Hhv = Hhvs+Hhwo. If in addition, we assume
that Ph coincides with the eigenvectors of the reduced Hessian (as it is in the case of constant
coefficients) we can write Hh as

(I − Ph + Ph)Hh(I − Ph + Ph) = (I − Ph)Hh(I − Ph) + PhHhPh (3.1)

assuming that Ph is the exact orthogonal projection operator i.e.,

(I − Ph)HhPhu = PhHh(I − Ph)u = 0, ∀u ∈ V h. (3.2)

Therefore we can write Hhu = g as,

(I − Ph)Hh(I − Ph)u + PhHhPhu = (I − Ph)g + Phg. (3.3)

Hence PhHhvs = Phg, and

(I − Ph)Hhwo = (I − Ph)g. (3.4)
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Since we are interested in removing the high-frequency error components while smoothing
we solve (3.4). However, since in general Ph will not correspond to the high-frequency
spectrum of the Hessian, we can use it as an approximate projection. An alternative approach
is to use Chebyshev iterative methods and work on the spectrum of interest, provided we
have eigenvalue estimates [3]. In principle, this method is quite similar to our approach
(it is used for an entirely different problem.) It uses a number of reduced Hessian matvec
operations and computes an exact decomposition. In the present case, we would like to avoid
spectra calculations, if possible, as our main goal is to minimize the number of matrix-vector
multiplications with the reduced Hessian. (For our smoother in Section 5 we only need the
spectra range, and not all the eigenvalues.) Instead we approximate I − Ph either by standard
interpolation-restriction operators or by using Fourier transforms.

Based on these decompositions we present a smoother that uses PCG for (3.4) and
I2h
h Ih

2has an approximation to Ph (Section 4). The advantage of this scheme is its straight-
forward implementation. However, it is hard to analyze its convergence for reasons that we
will discuss in the following sections. We also present a second smoother in which we use
a two-step stationary solver that acts exclusively on the high-frequency spectrum using exact
frequency truncations for Ph (Section 5).

4. PCG smoother and restriction-prolongation projection. We will consider two
schemes. In the first one we use a V-cycle multigrid as a solver. In the second one we
use multigrid as a preconditioner for CG. In both schemes we will use a few iterations of
PCG as a smoother (within multigrid). Our contribution here, is the design of appropriate
preconditioners for the PCG smoothing iterations. The preconditioner will be based on an
inexact inversion of the (I − Ph)Hh. To that end we need to approximate Ph and Hh ap-
proximations one for Ph and one for Hh; Ph will be approximated by I2h

h Ih
2h since this

approach generalizes to arbitrary meshes and it is easy to implement. For Hh we will explore
two approaches, one based on the regularization parameter (King preconditioner) and one
based on inexact solves of the forward and adjoint solves (Pointwise preconditioner).

KING PRECONDITIONER. This approach was proposed by King in [27] where multigrid
method for first kind of integral operator equations were developed. From Figure 2.1, we
can see that if the regularization parameter β is sufficiently large, it can approximate most
of the high frequency spectrum. Therefore, eigenvalues corresponding to the high-frequency
eigenvectors will be β so that β(I − Ph)I ≈ (I − Ph)Hh. Substituting this in the (3.4) we
get a single-level preconditioner of the form β−1(I − Ph). In a additional approximation
step we substitute the orthogonal projection by standard interpolation-restriction operators.
Therefore the single-level King preconditioner is given by β−1(I − Ih

2hI2h
h ).

In Table 3.1, we summarize the spectral properties of the restriction operator I2h
h , pro-

longation operators Ih
2h, and the orthogonal decomposition operator I− Ih

2hI2h
h .

POINTWISE PRECONDITIONER. The pointwise preconditioner is based on a pointwise
approximation of the reduced Hessian, combined with the high-frequency filtering described
in the previous section. The approximate reduced Hessian H̃h should approximate well the
high-frequency of the true Hessian (for β = 0) and should be easy to compute. Here we
propose a simple waveform-Jacobi relaxation in time. If we discretize in space using the
standard three point stencil for the Laplacian on a uniform grid, and introduce a space-Jacobi
splitting a matrix vector multiplication with the reduced Hessian (in the frequency domain)
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is given by

∂y

∂t
+

2ν

N2
y − 2ν

N2
cos

kπ

N
y = u, solve for y

∂λ

∂t
+

2ν

N2
λ− 2ν

N2
cos

kπ

N
λ + y(T − t) = 0, solve for λ

v =
∫

λ, v = Hu.

Here k is the wavenumber, and y, λ and u represent the magnitude of the kth eigenvector.
The approximate waveform Jacobi relaxation is given by

∂yi

∂t
+

2ν

N2
yi −

2ν

N2
cos

kπ

N
yi−1 = u, i = 1 . . .M

∂λi

∂t
+

2ν

N2
λi −

2ν

N2
cos

kπ

N
λi−1 + yM (T − t) = 0, i = 1 . . .M

v =
∫

λM , v = H̃u.

The number of iterations M determines the quality of the preconditioner. So far we have only
discretized in space. We use a Backward-Euler scheme to discretize in time. The number of
time steps equals the number of discretization points in space. Next, we discuss numerical
experiments in which we compare the two preconditioners.

TABLE 4.1
Performance of multigrid solver with PCG smoother. We report results for a V-cycle multigrid solver. The

King and pointwise preconditioners are used in PCG. Here Ns is the size of the problem, β is the regularization
parameter. The number of resolved frequencies (number of eigenvalues that are greater than β are reported in
brackets); K-PCG corresponds to the number of V(3, 3) cycles with King preconditioner and PF-PCG corresponds
to the number of V(3, 3) cycles with pointwise preconditioner. Convergence factors, ρK and ρPF , are the av-
erage of convergence factors over all the V-cycles till convergence. Stopping criterion for the multigrid solver is
‖r‖/‖r0‖ ≤ 10−12. Two cases of regularization parameter are considered: Case 1: β = 10−3h2/ν and Case
2:β = 10−2h2/ν. ’-’ means that the multigrid solver hasn’t converged within the 50 V-cycles. Numerical experi-
ment are done for ν = 1, ν = 0.01 with T = 1. At the coarsest level Ns = 16.

ν = 1

Ns β (σ > β) K-PCG PF-PCG ρK ρPF

512 4e-09 (40) 4e-08 (22) 14 6 7 6 0.239 0.171 0.041 0.022
1024 1e-09 (57) 1e-08 (32) - 7 8 6 0.493 0.174 0.076 0.058
2048 2e-10 (81) 2e-09 (45) - 13 8 6 0.573 0.253 0.162 0.053
4096 6e-11 (114) 6e-10 (64) - 12 9 6 0.704 0.206 0.150 0.104

ν = 0.01

Ns β (σ > β) K-PCG PF-PCG ρK ρPF

512 4e-07 (131) 4e-06 (72) 22 7 5 5 0.359 0.294 0.007 0.004
1024 1e-07 (183) 1e-06 (102) 29 9 7 6 0.474 0.385 0.025 0.014
2048 2e-08 (257) 2e-07 (144) - 13 8 6 - 0.164 0.074 0.033
4096 6e-09 (363) 6e-08 (203) - 19 9 7 - 0.322 0.118 0.089

4.1. Numerical experiments for the PCG smoother. We report numerical experiments
in which we compare the the effectiveness of a V-cycle multigrid for (1.2). The V-cycle
uses linear finite element based interpolation and restriction operators, and preconditioned
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TABLE 4.2
Performance of PCG as a solver with multigrid preconditioner with PCG as smoother in multigrid. N is the

size of the problem, none corresponds to number of PCG iterations without preconditioner. K-PCG corresponds
to the PCG iterations with multigrid preconditioner V(3, 3), with King preconditioner in PCG smoother. PF-PCG
corresponds to the number of PCG iterations with multigrid preconditioner V(3, 3) with Pointwise preconditioner in
PCG smoother. Values in the brackets represent equivalent number of matvecs done at finest level. Stopping criterion
for PCG is ‖r‖/‖r0‖ ≤ 10−12. Two cases of regularization parameter: Case 1 is β = 10−3h2 and Case 2 is
β = 10−2h2 are considered. Coarsest level is 16. Parameters used are ν = 1 and ν = 0.01 with T = 1.

ν = 1

N β(σ > β) none K-PCG PF-PCG
512 3. 81e-09 (40) 3. 81e-08 (22) 167 81 9 (63) 4(28) 5 (35) 4(28)
1024 9. 54e-10 (57) 9. 54e-09 (32) 267 117 14 (98) 5(35) 6 (42) 4(28)
2048 2.38e-10 (81) 2.38e-09 (45) 516 192 22 (154) 8(56) 6 (42) 5(35)
4096 5. 96e-11 (114) 5. 96e-10 (64) 1007 350 28 (196) 11(77) 6 (42) 5(35)

ν = 0.01

N β(σ > β) none K-PCG PF-PCG
512 3. 81e-07 (131) 3. 81e-06 (72) 959 329 24 (168) 6(42) 4 (28) 4(28)
1024 9. 54e-08 (183) 9. 54e-07 (102) 1780 642 41 (287) 7(49) 5 (35) 5(35)
2048 2.38e-08 (257) 2.38e-07 (144) 3453 1201 99 (693) 9(63) 6 (42) 5(35)
4096 5. 96e-09 (363) 5. 96e-08 (203) 7245 2522 498 (3486) 13(91) 7 (49) 6(42)

Conjugate Gradients as a smoother. Two cases of regularization parameter are considered4:
β = 10−3h2

ν , 10−2h2

ν . We also study the effect of the diffusion coefficient. We consider
two cases of diffusion coefficient: ν = 1, 0.01 are considered in the spectral domain. In all
the numerical results given below, convergence factor is defined as the average of the ratio
of the residuals resulting from two V-cycles. In all experiments H̃ is constructed using 20
waveform-Jacobi iterations for the adjoint and forward problems. In Table 4.1, results are
given for multigrid solver. The PCG smoother with pointwise preconditioner converges in
all the cases where as King preconditioner fails to converge in case of β = 10−3h2/ν. The
pointwise preconditioner is faster than the King preconditioner in case of β = 10−2h2/ν.
Despite the fact that they have almost the same effect on the reduced Hessian at the finest level
they behave differently at coarser levels. In Figure 4.1 the effect of these two preconditioners
on the reduced Hessian is shown for coarser levels.

The pointwise preconditioner has the same effect on the reduced Hessian even at coarser
levels unlike King preconditioner. From Figure 4.1 for β = 10−3h2, KH has little or no
clustering of eigenvalues near high frequency eigenvectors at level 8 whereas PFH has sig-
nificant clustering. In case of β = 10−2h2, both KH and PFH have significant clustering
of eigenvalues near high frequency eigenvectors and PFH has more clustering than KH
which makes PFH faster. Therefore, the effect of the preconditioner on the reduced Hessian
at different levels in multigrid is important to predict the performance of the preconditioner
in PCG.

Since we are not using an exact coarse-grid operator, we also test multigrid as a pre-
conditioner within a PCG solver (Table 4.2). In both the cases, we can solve the problem

4The regularization parameter is chosen to trade off stability and fidelity to the data. In the present problem,
the discretization error is of O(h2) and acts as a noise to the problem. In these synthetic experiments (in which we
commit several “inverse crimes”, [14]) we know the exact spectrum of the reduced Hessian, the level of noise, and
our reconstructed solution is expected to be smooth. So the choice regularization is not an issue. In the general case,
the choice of regularization is of paramount importance. But this is beyond the scope of this paper.
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FIG. 4.1. Comparison of the spectrum of the preconditioned reduced Hessian. We report the discrete
spectrum of the preconditioned reduced Hessian with King preconditioner (KH) and pointwise (PFH) preconditioner
in spectral domain for the finest level and different coarser levels. The PFH preconditioner has similar clustering of
eigenvalues at high-frequency region at finer and coarser levels for different values of regularization parameter. KH
does not show similar trend at finer and coarser level for different values of regularization parameter. This is the
reason for the robust performance of PFH and failure of KH for smaller regularization parameters.

1 2 3 4 5 6 7 8 9 10 11 12
10−15

10−10

10−5

100

number of V(3,3) cycles

re
la

tiv
e 

re
si

du
al

 r/
r 0

β = 10−3h2

K−CG
PF−CG
CG

1 2 3 4 5 6 7 8 9 10 11 12
10−15

10−10

10−5

100

number of V(3,3) cycles

re
la

tiv
e 

re
si

du
al

 r/
r 0

β = 10−2h2

K−CG
PF−CG
CG

FIG. 4.2. V-cycle residual wrt regularization parameter. Relative residual vs V(3, 3) cycles with PCG
smoother for two cases of regularization parameter are shown. In this Figure, we compare the rate at which the
residual decreases for different preconditioners used in PCG smoother for two cases of regularization parameters.
Case 1: β = 10−3h2 is shown on the left and Case 2: β = 10−2h2 is shown on the right where h = 1/4096.
King’s preconditioner (K-CG) converges in Case 2 and fails to converge in Case 1. Pointwise (PF-CG) precondi-
tioner converges in both the cases. CG fails as a smoother in both the cases.
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in O(1) iterations as shown in the numerical results. This is equivalent to solving the for-
ward and adjoint problems a constant number of times independent of the mesh size and the
regularization parameter.

The King preconditioner has negligible computational cost when compared to the actual
reduced Hessian matvec. In case of pointwise preconditioner there is an overhead associ-
ated in computing H̃−1 every iteration. For a given residual reduction, it takes of constant
number of CG iterations to invert H̃h. Since the residual reduction is close to machine accu-
racy, (H̃h)−1 is a linear operator and creates no convergence problems in the smoother. The
computational cost of evaluating H̃−1, however, is much higher than the cost associated with
applying the King preconditioner. When the regularization parameter is large the pointwise
preconditioner is not necessary. Overall however, the latter is more robust. As seen from the
numerical results, pointwise preconditioner converges for different cases of regularization pa-
rameters and diffusion coefficients unlike King preconditioner, which works only for larger
regularization parameters. Therefore, pointwise preconditioner can be used in general though
it has more computational overhead than the King preconditioner. Solving the forward and
adjoint problems has a computational complexity 5 of O(N2

s ) using multigrid algorithms to
solve the linear algebraic system of equations at each time step in case of linear problems,
where Ns is the number of grid points.

5. Two-step stationary scheme as smoother and FFT filtering. As discussed above,
the King preconditioner fails in the case of smaller regularization parameters and the point-
wise preconditioner, though robust, has an overhead of computing the inverse of the approx-
imate reduced Hessian at every iteration. The combination of multigrid with PCG and the
pointwise preconditioner performs well, at least for the simple model. Our target application
ultimately will involve variable coefficient problems and partial observations. In those cases
we expect a higher number of iterations. Although we can use multigrid as a solver it would
be preferable to combine it with an outer PCG acceleration. Due to the non-stationarity of
our scheme, however, this cannot be done.

As an alternative we propose to use an iterative two-step stationary scheme [16] (algo-
rithm 2) as a smoother. Then, in the constant-coefficient case, one can derive exact smoothing
factors. As in classical multigrid theory [12, 19], the analysis becomes approximate in the
case of variable coefficients. One disadvantage of the two-step solver is that it requires esti-
mates of extreme eigenvalues. To avoid computing eigenvalues we use a the spectral cutoff
and analytic spectrum estimates. In this manner the smoother is forced to iterate on the high-
frequency regime. In the following we present the algorithm in detail, analyze its convergence
factor, and conduct numerical experiments to test our hypothesis.

Algorithm 2 Standard two-step stationary iterative scheme (Solve AdT = din)
1: σ1 = σmin(A) and σn = σmax(A)
2: ρ = 1−σ1/σn

1+σ1/σn
, α = 2

1+(1−ρ2)1/2 , ξ0 = 2
σ1+σn

, ξ = 2α
σ1+σn

,
3: r = −din, d0 = 0, d1 = ξ0r
4: for i = 1 . . . L do
5: r = Ad1 − din

6: d = αd1 + (1− α)d0 − ξr
7: d0 = d1, d1 = d
8: end for

Since we are interested in removing the high-frequency error components while smooth-

5Nt = O(Ns)
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ing, we iterate on (3.4) in the smoothing step. In (3.4) the projection operator I − Ph can be
defined as a filter which removes the eigenvector components corresponding to small wave
numbers. Let us denote the filtering operation by W = I − Ph. In the present problem,
the eigenvectors are sines. Therefore, we can use discrete sine transforms to filter the low-
frequency components of an input vector (algorithm 3).6

Algorithm 3 Projection using Sine Transform
1: Let u be the input vector and let v = Wu
2: uk = IDST(u) 1 < k < N − 1 transform into spectral domain
3: uk = 0 1 < k < N−1

2 filtering in spectral domain
4: v = DST(uk) transform back to spatial domain
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FIG. 5.1. Eigenvalues for the spectrally filtered re-
duced Hessian. Here we report the magnitude of the eigen-
values of the reduced Hessian. Here the W operator repre-
sents an exact high-pass filter. During multigrid smoothing,
the composite operator WH is inexactly inverted using a
two-step stationary iterative solver.

The problem that we solve during the smoothing iterations is

WHhu = Wg. (5.1)

Since the null space of W is non-trivial (5.1) is singular. However, it is proved that a positive
semi-definite system of the form (5.1) can be solved by preconditioned conjugate-gradient
method (PCG) as long as the right-hand side is consistent [23]. The two-step iterative scheme
requires that all the eigenvalues of the matrix (WHh) be positive (see section 5.2.3 in [4]).
Let W = ZZT where Z = [vN+1

2
, . . . , vN−1] in which vk correspond to the kth eigenvector

of Hh. The subspace spanned by the eigenvectors [v1, . . . , vN−1
2

] is invariant and does not
influence the convergence rate of the two-step iterative solver.

We define one smoothing step as one iteration of the two-step scheme. In case of non-
zero initial guess, the error el after l smoothing iterations is given by

el = ((α− 2αWH

σ1 + σn
)(1− 2WH

σ1 + σn
) + (1− α))le0, (5.2)

where e0 is the initial error and α is defined in Algorithm 2; σ1 and σn in (5.2) are defined
later. Let e0 = ΣN−1

k=1 mkvk where vk are the eigenvectors of H and mk are the corresponding
error magnitudes. Assuming that W results in an exact decomposition (3.2) eigenvalues of
WH are σ(WH) = {0, 0, . . . , σN+1/2, . . . , σN−1}, where σk correspond to the kth eigen-
value of the reduced Hessian H . Substitute e0 in (5.2) and take one smoothing iteration, we
get e1

k = mkvk, ∀ 1 < k < N−1
2 , where e1

k is the error component in the kth eigenvector

6this is true only in the present case.
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direction after one smoothing iteration. Similarly,

e1
k = ((α− 2ασk

σ1 + σn
)(1− 2σk

σ1 + σn
) + (1− α))︸ ︷︷ ︸

µk

mkvk, ∀ N + 1
2

< k < N − 1.

Here µk is the amplification factor of the error component in the kth eigenvector direction.
The eigenvalues σ1, . . . , σN−1/2 do not affect the iteration. The smoothing factor µ is given
by maxk(µk). To estimate µ we need estimates of σ1 and σn. For the constant coefficient
case we have computed these values analytically by (2.9): we fix the values of σ1 and σn to
be σN and σ(N+1)/2 respectively. Then, since σ1 ≤ σk ≤ σn we have µk < 1 ∀ N+1

2 < k <
N − 1. Using the exact spectrum we can also show that the ratio σ1/σn = 1/4 and it is mesh
independent (for β = 0). In the variable coefficient case we use a heuristic. We estimate σn

of the unregularized Hessian using a Krylov method on the reduced Hessian. Then, guided by
the constant coefficient case, we set σ1 = σn/4. For this ratio the smoothing factor µ is 0.288
for ν = 1, 0.01. In two-level V(2,2) cycles if we use the Galerkin coarse-grid operator (H2h

G ),

TABLE 5.1
Convergence for zero regularization parameter. Number of two-grid V(2,2)-cycles to get a relative residual

of 10−8, V1, V0.01 for ν = 1, 0.01 are given when β = 0. The size of the problem is 2level. The initial guess
u0 = u∗ + Σksin(kπx), where u∗ is the exact solution. The theoretical smoothing factor is 0.288 and the
numerical is 0.29, and it is mesh independent.

level V1 V0.01

4 16 22
5 22 27
6 25 32
7 26 34
8 24 33

some low frequency error components are eliminated in the first V-cycle. In Figure 5.2 we
can see that relative residual drops suddenly in the first V-cycle and maintains a constant ratio
thereafter. Whereas, the reduction in the error is constant which is expected. The sudden drop
in the relative residual is because of the coarse-grid correction where the low-frequency error
components are removed.

According to the spectrum of Hh low-frequency error components correspond to large
eigenvalues and since r = He, there is a sudden drop in the residual. After the first V-cycle,
the reduction in the residual is less than the first V-cycle. We report the number of V-cycles
to get a relative residual of 10−8 in Table 5.1 for different mesh-sizes and two diffusion
coefficients ν = 1, 0.01. The number of V-cycles is mesh-independent.

5.1. Multigrid preconditioner. As we have mentioned, one difficulty in designing a
multigrid scheme for the reduced Hessian operator is the choice of the coarse grid operator.
If we use H2h instead H2h

G we cannot remove certain error components that belong to the
intermediate frequency range (of the fine-grid). These error components are neither removed
by the 2-step scheme nor by the coarse-grid correction. Therefore, we use multigrid as a
preconditioner in PCG so that PCG removes the error components that are not removed by
multigrid.

We denote the multigrid preconditioner by M−1 (algorithm 4) and the smoothing oper-
ator by S(A, f, u) where A, f , u are the matvec operator, the right hand side and the initial
guess respectively. We denote inexact multigrid preconditioner by M̃−1 in which exact re-
duced Hessian Hh is replaced by inexact reduced Hessian H̃h in smoothing. H̃h is obtained
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FIG. 5.2. Residual reduction in multigrid. Relative residual and error vs number of two-level V(2,2) cycles
for ν = 1 and level six and using H2h

G as the coarse-grid operator.

by replacing exact forward and adjoint solves to do one reduced Hessian matvec by inexact
forward and adjoint solves. In order to do this, we use a fixed number of Jacobi waveform
relaxation iterations [29]. The number of waveform relaxation steps have to be increased
in order to get a completely scalable algorithm because of the convergence properties of the
Jacobi waveform relaxation method.

Algorithm 4 Two-level exact multigrid Preconditioner (uh = M−1fh)

1: uh = S(WHh,Wfh, 0) pre-smoothing with Hh

2: rh = fh −Huh residual evaluation
3: r2h = I2h

h rh restriction
4: e2h = (H2h)−1r2h coarse-grid correction
5: eh = Ih

2heh prolongation
6: uh = uh + eh correction
7: uh = S(WHh,Wfh, uh) post-smoothing with Hh

In the Jacobi waveform relaxation, we solve ordinary differential equations at every spa-
tial grid point, thus removing the spatial-coupling that arises from the discretization of the
Laplacian operator. This is different from the standard spatial weighted Jacobi scheme. The
(high-frequency) convergence factors of weighted Jacobi method are mesh-independent—
unlike the Jacobi waveform relaxation that gives rise to mesh-dependent convergence factor
[29].7

5.2. Results and discussion. In this section, we present results for the constant and
variable coefficient case, as well as the case in which we have partial observations. We report
PCG iterations with multigrid preconditioners M−1 and M̃−1. We also show the sensitivity
of number of Jacobi waveform relaxation steps on the number of PCG iterations. We present
numerical results that interrogate the sensitivity of the scheme on the diffusion coefficient,
the number of waveform relaxations, and the coarsening strategy (semi-coarsening or space
only vs standard space-time coarsening).

5.2.1. Constant coefficients case. Results for two cases of diffusion coefficients ν =
1, 0.01 are given in Table 5.2. The convergence of PCG is mesh independent. We are re-
porting results for both two-level and multiple V-cycle preconditioners. The cost of the pre-
conditioner depends on the approximation of the reduced Hessian. Exact matvecs are more

7One could use standard time marching schemes in which exact inversions of the spatial operator can be replaced
by an inexact solve, like weighted Jacobi.
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expensive. For fixed number of waveform relaxations the quality of the approximate Hessian
deteriorates with increasing mesh size. The condition number of Hh is κ = O(N4) where N
is the size of the problem. Therefore, without a preconditioner number of CG iterations will
be O(N2). By using multigrid preconditioner number of CG iterations is mesh-independent
O(1). Using a Backward-Euler time-stepping combined with an optimal spatial solver for
the forward and adjoint problems the amount of work done for each reduced Hessian matvec
is O(NNt + N log2 N) where the first term comes from the forward and adjoint solve with
Nt time steps, and the second part comes from the multigrid sweeps (the square in the loga-
rithm is related to the fast sine transforms). Therefore, the total amount of work done to solve
the system is brought down from O(N4) to O(N2). To solve the inverse problem we need
to solve the forward problem a constant number of times independent of the regularization
parameter and the mesh size.

TABLE 5.2
PCG convergence using the exact high-frequency spectrum of the reduced Hessian. Number of PCG itera-

tions with two-level multigrid preconditioner with exact reduced Hessian in the smoother M−1 and inexact reduced
Hessian in the smoother M̃−1. Semi-coarsening in space (subscript sec) and standard coarsening (subscript stc)
in space and time are considered. CG is terminated when ‖r‖/‖r0‖ < 10−8 or when the number of iterations
is 2Ns where Ns is the size of the problem. The values in the brackets are the number of eigenvectors not filtered
by the regularization. Here 16 Jacobi waveform relaxation steps are done for forward and adjoint solves to do one
matrix-vector operation of H̃ .

ν = 1
Ns β M−1

sec M̃−1
sec M−1

stc M̃−1
stc

31 5e-07 (31) 10 10 10 10
63 1e-07 (44) 9 9 9 9
127 3e-08 (63) 6 6 7 7
255 7e-09 (89) 4 4 4 4

ν = 0.01
Ns β M−1

sec M̃−1
sec M−1

stc M̃−1
stc

31 5e-03 (31) 14 14 13 13
63 1e-03 (44) 13 13 13 13
127 3e-04 (63 10 10 10 10
255 7e-05 (89) 7 7 7 7

5.2.2. Non-constant coefficient case. We extend the above ideas to solve inverse prob-
lems in parabolic problems with non-constant coefficients:

∂y

∂t
−∆y = ay + bu in D, y = 0 on ∂Ω, y(Ω, 0) = 0 in Ω.

Equations of this kind are obtained when a non-linear reaction-diffusion equation is lin-
earized. In this case, sines are not the eigenvectors of the reduced Hessian. We assume
that a, b are smooth and bounded. Therefore, the Fourier coefficients of a, b decay to zero
relatively fast. From this assumption, the contribution of a, b to the spectrum of the forward
problem in the high-frequency region is negligible. Using this observation and considering
the computational cost of constructing the exact high-frequency eigenspace of the reduced
Hessian, we use sine transforms to decompose the finite dimensional space to get acceptable
convergence. The numerical results, that we next discuss, indicate that our assumption is
reasonable. The reconstructed source is depicted in Figure 5.5.

Two cases of coarsening strategies are implemented : 1) semi-coarsening in space and 2)
standard-coarsening is space and time. Mesh-independent convergence of PCG with multi-
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TABLE 5.3
Convergence comparisons for PCG using inexact approximations of the reduced Hessian. We report the

number of PCG iterations using a multigrid preconditioner that employs (in the smoother) either an exact reduced
Hessian M−1, or an inexact reduced Hessian M̃−1. Semi-coarsening in space (subscript sec) and standard coars-
ening (subscript stc) in space and time are considered. PCG is terminated when ‖r‖/‖r0‖ < 10−8. The values in
the brackets in the column β are the number of reconstructed eigenvectors (not filtered by the regularization). The
size of the coarsest level problem is 15. Here 16 Jacobi waveform relaxation steps are done for forward and adjoint
solves to do one matrix-vector operation of H̃ .

ν = 1.0
Ns β M−1

sec M̃−1
sec M−1

stc M̃−1
stc

31 5e-07 (31) 10 10 10 10
63 1e-07 (44) 13 13 13 17

127 3e-08 (63) 13 14 14 16
255 7e-09 (89) 13 19 13 16
511 2e-09 (127) 15 18 15 17

1023 5e-10 (180) 15 17 15 17
ν = 0.01

Ns β M−1
sec M̃−1

sec M−1
stc M̃−1

stc

31 5e-03 (31) 14 14 13 13
63 1e-03 (44) 17 17 17 17

127 3e-04 (63) 20 20 19 21
255 7e-05 (89) 23 24 21 23
511 2e-05 (127) 24 26 24 27

1023 5e-06 (180) 25 28 25 30
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FIG. 5.3. Deterioration of non-Galerkin coarse-grid
operator. In this figure we depict the deterioration of the
non-Galerkin coarse grid operator as a function of the diffu-
sion coefficient. As the diffusion reduces, the pollution from
the prolongation and restriction becomes dominant. If we
discretize directly in the coarse grid the spectrum of H2h ap-
proaches that of the identity operator. On the other hand, the
Galerkin operator H2h

G approaches that of (Ih
2hI2h

h ). (Of
course the high-frequency regime of the spectrum is always
different.)

grid preconditioner is observed in case of M−1, whereas performance of M̃−1 slightly de-
teriorates with mesh-size. Standard coarsening does not perform as well as semi-coarsening.
This can be explained by the fact that the convergence factors of the Jacobi waveform re-
laxation are mesh dependent, given by 1 - O(h2) and convergence factors using standard-
coarsening are worse than semi-coarsening [22]. If we increase the number of Jacobi wave-
form relaxation steps with the mesh size then we could observe that the number of PCG iter-
ations with M̃−1 preconditioner will tend to the number of iterations taken by M−1. Results
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FIG. 5.4. Parabolic PDE with variable coefficients. We have constructed a traveling wave solution to emulate
solutions to reaction-diffusion equations. The function ŷ(x, t) is used to evaluate a(x, t) and b(x, t) which are then
used in numerical experiments. The inversion parameter u is depicted on the left panel.
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FIG. 5.5. Reconstructed source. Here we show the reconstructed curves in the real (left column) and fre-
quency domains (right column) for N=64 and two values of the regularization parameter.

of PCG with multigrid preconditioners is shown in (Table 5.5 and Table 5.4). The sensitivity
of number of PCG iterations with increase in number of Jacobi waveform relaxation steps is
reported in Table 5.5. The number of PCG iterations taken by M̃−1 decrease with increase
in Jacobi waveform relaxation steps. A lower bound to the number iterations taken by M̃−1

is the number of iterations taken by M−1. The overall computational complexity in using
M−1 and M̃−1 differ only by a constant if we use a sufficient number of Jacobi waveform
relaxation steps in M̃−1.

In Table 5.6, we report the number of PCG iterations when the data is given at seven
equally spaced points in space at all the time steps. Exact multigrid preconditioner with
standard-coarsening of the exact reduced Hessian and approximate multigrid preconditioner
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TABLE 5.4
Multigrid performance for the variable coefficient case. Number of CG iterations for two-level preconditioner

with exact reduced Hessian in the smoother M−1 and inexact reduced Hessian in the smoother M̃−1. Semi-
coarsening in space (subscript sec) and standard coarsening (subscript stc) in space and time are considered. CG
is terminated when ‖r‖/‖r0‖ < 10−8 or when the number of iterations is 2Ns where Ns is the size of the problem.
Case I has the a = û and b = ŷ and Case II has a = 2ŷû and b = ŷ2 where ŷ is a traveling wave with a Gaussian
shape (Figure 5.4) and û = Gaussian(0.2)+ sin(πx) (0.2 is the center of the Gaussian). Here 8 Jacobi waveform
relaxation steps are done in all the cases in M̃−1.

CASE I : a = û, b = ŷ

Ns β M−1
sec M̃−1

sec M−1
stc M̃−1

stc

31 2e-06 12 15 13 16
63 5e-07 11 11 13 13

127 1e-07 10 10 12 12
255 3e-08 8 9 10 10

CASE II : a = 2ŷû, b = ŷ2

Ns β M−1
sec M̃−1

sec M−1
stc M̃−1

stc

31 2e-06 13 15 14 15
63 5e-07 11 12 15 15

127 1e-07 11 11 11 11
255 3e-08 9 9 10 10

TABLE 5.5
Dependence on the fidelity of the reduced Hessian approximation. Number of CG iterations for multi-level

preconditioner with exact reduced Hessian in the smoother M−1 and inexact reduced Hessian in the smoother
M̃−1. Semi-coarsening in space (subscript sec) and standard coarsening (subscript stc) in space and time are
considered. CG is terminated when ‖r‖/‖r0‖ < 10−8 or when the number of iterations is 2Ns where Ns is the
size of the problem. Case I has the a = û and b = ŷ and Case II has a = 2ŷû and b = ŷ2 where ŷ is a traveling
wave with a Gaussian shape (Figure 5.4) and û = Gaussian(0.2) + sin(πx) (0.2 is the center of the Gaussian).
Number of Jacobi waveform relaxation steps used in M̃−1 is given in brackets.

CASE I : a = û, b = ŷ

Ns β M−1
sec M̃−1

sec (8) M̃−1
sec (16) M̃−1

sec (32) M−1
stc M̃−1

stc (8) M̃−1
stc (16) M̃−1

stc (32)
31 2e-06 12 15 14 15 13 16 15 15
63 5e-07 13 16 15 14 14 16 16 16
127 1e-07 14 27 24 18 17 40 30 30
255 3e-08 18 52 37 26 23 - - -

CASE II : a = 2ŷû, b = ŷ2

Ns β M−1
sec M̃−1

sec (8) M̃−1
sec (16) M̃−1

sec (32) M−1
stc M̃−1

stc (8) M̃−1
stc (16) M̃−1

stc (32)
31 2e-06 13 15 15 15 14 15 15 15
63 5e-07 14 16 16 16 16 21 21 20
127 1e-07 16 27 28 21 18 - 30 23
255 3e-08 19 140 60 32 20 - - -

with semi-coarsening of the approximate reduced Hessian are considered. Results in Table
5.6 show that the multigrid preconditioners presented here are robust even in practical situa-
tions when the data is sparse.

6. Full space methods. A disadvantage of a reduced space approach is the need to
solve the forward and adjoint problems far from the optimum. In this section, we discuss
full space methods where the optimality system is solved for state, adjoint and inversion
variables in one shot. The main advantage in solving the problem in full space is that we
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TABLE 5.6
Variable coefficients and partial observations. Number of PCG iterations for multi-level preconditioner for

seven observations on the spatial grid. Semi-coarsening in space is represented by subscript sec and standard
coarsening is represented by subscript stc). CG is terminated when ‖r‖/‖r0‖ < 10−8. Case I has the a = û and
b = ŷ and Case II has a = 2ŷû and b = ŷ2 where ŷ is a traveling wave with a Gaussian shape (Figure 5.4) and
û = Gaussian(0.2) + sin(πx) (0.2 is the center of the Gaussian).

CASE I : a = û, b = ŷ

Ns β M−1
stc M̃−1

sec (32)
31 2e-04 13 13
63 5e-05 15 15
127 1e-05 18 22
255 3e-06 19 23

CASE II : a = 2ŷû, b = ŷ2

Ns β M−1
stc M̃−1

sec (32)
31 2e-04 13 13
63 5e-05 15 15

127 1e-05 18 21
255 3e-06 18 23

can avoid solving the forward and adjoint problems at each iteration which is required in
reduced space. On the other hand, the KKT system is more than twice that of the forward
problem, it is ill-conditioned, and indefinite. For such systems Krylov solvers are slow to
converge. Therefore a good preconditioner is required to make the full space method efficient.
A Lagrange-Newton-Krylov-Schur preconditioner (LNKS) has been proposed in [7], [8] in
the context of solving optimal control problems with elliptic PDE constraints. In this section
we discuss LNKS variants that can be used in the context of inverse problems with parabolic
PDE constraints.

Space-time multigrid methods for a parabolic PDE have been considered in literature
[22]. In the present problem we have two coupled PDEs with opposite time orientation which
provide significant challenge to design a smoother. These issues have been considered in [9]
and a time-split collective Gauss-Seidel method (TS-CGS) has been proposed. The optimality
condition provided a scalar relation between the control and Lagrange multipliers; in the
present problem the control equation is an algebraic-integral equation. Here we discuss the
TS-CGS method for our particular problem. (We follow the notation in [9].)

6.1. Lagrange-Newton-Krylov-Schur method (LNKS). In this section we briefly dis-
cuss the LNKS method proposed in [7], [8]. LNKS method is based on block factorization of
the KKT system which is shown below. (Please refer to [7] for further details.)

K =

 I 0 JT

0 βI CT

J C 0

 =

 J−1 0 I
0 I CT J−T

I 0 0

 J C 0
0 H 0
0 −J−1C JT

 (6.1)

The KKT preconditioner P is then defined as

P̃ =

 0 0 I

0 I CT J̃−T

I 0 0

 J̃ C 0
0 B 0
0 0 J̃T

 (6.2)

In P̃ , exact forward J−1 and adjoint solves J−T are replaced by inexact solves J̃−1 and J̃−T

respectively. The preconditioned KKT matrix is P̃−1K where

P̃−1 =

 J̃−1 −J̃−1CB−1 0
0 B−1 0
0 0 J̃−T

 0 0 I

−CT J̃−T I 0
I 0 0

 . (6.3)

A popular method to solve large symmetric indefinite systems is MINRES. One major disad-
vantage of MINRES is that it requires a symmetric positive definite preconditioner, despite
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the fact that the KKT is indefinite. Alternatively, the symmetric Quasi-minimum residual
method (SQMR) can be used with indefinite preconditioners but it requires two matvecs per
Krylov iteration and it does not take advantage of the fact that the KKT system is symmetric
[17]. In all the numerical experiments with LNKS we use SQMR. .

We now discuss a multigrid scheme for the full KKT matrix. We use a V-cycle, with
standard restriction and prolongation, and one application P̃ as smoother. The goal is to
remove high frequency error components in the state, Lagrange and inversion variables in
each step of the smoother without doing exact forward or adjoint solves. Therefore, we use the
waveform Jacobi method. To update the inversion variables we use pointwise preconditioner
discussed in section 4.

Algorithm 5 LNKS smoother
1: Given y, u, λ and f = [fy, fu, fλ]
2: Evaluate f̃y = y + JT λ− fy , f̃u = u + CT λ− fu, f̃λ = c− fλ

3: where c = Jy + Cu
4: H̃pu = f̃u H̃: pointwise preconditioner
5: J̃py = f̃y − Cpu Inexact forward solve
6: J̃T pλ = f̃λ − py Inexact adjoint solve
7: y = y − py , u = u− pu, and λ = λ− pλ. Update

6.2. Time-split Collective Gauss-Seidel (TS-CGS). In this method, we eliminate the
inversion variables using the inversion equation (6.4),

βu−
∫

T

λ d t = 0 in Ω. (6.4)

(Obviously this cannot be done for β = 0.)
Therefore, we can rewrite the KKT system as :

∂y

∂t
−∆y =

1
β

∫
T

λ d t, y(Ω, 0) = y0, y(∂Ω, t) = 0,

−∂λ

∂t
−∆λ = −(y − y∗), λ(Ω, 0) = 0, λ(∂Ω, t) = 0. (6.5)

Using finite differences for Laplacian and backward Euler scheme in time (6.5) the above
system can be written as

[1 + 2γ]yim − γ[yi−1m + yi+1m]− yim−1 =
δt2

β

Nt∑
k=1

λik (6.6)

[1 + 2γ]λim − γ[λi−1m + λi+1m]− λim+1 = −δt(yim − y∗im), (6.7)

where γ = δt
h2 , and i,m represent the spatial and temporal indices of the variables respec-

tively. In case of a collective Gauss-Seidel iteration let us denote the variables as φk =
(yk, λk) at each grid point. We can write (6.6), (6.7) as E(φim) = [f − A(φim)] = 0, at
the grid point im. Let E′ be the Jacobian of E with respect to (yk, λk). One step of the
collective Gauss-Seidel scheme is given by φ1

im = φ0
im − [E′(φ0

im)]−1E(φ0
im). This scheme

performs well for steady state problems [11] but it diverges in the case of an optimal control
of a parabolic PDE because of opposite time orientation of the state and adjoint equations. In
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Algorithm 6 Time-split collective Gauss-Seidel method (TS-CGS)

1: Set φ0 = φ̃
2: for m = 1, ..., Nt do do
3: for i in lexicographic order do do
4: y1

im = y0
im − [E′(φim)]−1E(φim)|y

5: λ1
iNt−m = λ0

iNt−m − [E′(φim)]−1E(φim)|λ
6: end for
7: end for

order to overcome this problem, time-split collective Gauss-Seidel (TS-CGS) iteration was
proposed in [9] (algorithm 6). Following [9] we use Fourier mode analysis to analyze the con-
vergence properties of the two-grid version of the inverse solver. Let the smoothing operator
be Sk, and let the coarse-grid correction be given by CGk−1

k . Fourier symbols are represented
with a hat on the symbol of the operator. On the fine grid consider the Fourier components
φ(j,θ) = eij·θ where i is the imaginary unit, j = (jx, jt) ∈ Z × Z, θ = (θx, θt) ∈
[π, π)2 and j · θ = jxθx + jtθt. The frequency domain is spanned by θ(0,0) := (θx, θt)
andθ(1,0) := (θ̄x, θt) (θx, θt) ∈ ([−π/2, π/2) × [−π, π)) and θ̄x = θx − sign(θx)π. Let
Eθ

k = span[φk(·,θα) : α ∈ {(0, 0), (1, 0)}. Assuming all multigrid components are linear
and that A−1

k−1 exists, let the Fourier symbol of the two grid operator TGk−1
k on the space

Eθ
k × Eθ

k is given by

ˆTG
k−1

k (θ) = Ŝk(θ)m2ĈG
k−1

k (θ)Ŝk(θ)m1 , (6.8)

where m1 and m2 are the number of pre- and post- smoothing iterations respectively. Using
(6.6) and (6.7) Fourier symbol of the smoothing operator is given by

Ŝ(θ) = diag{σ(θ(0,0)), σ(θ(1,0)), σ(θ(0,0)), σ(θ(1,0))},

where

σ(θ(p,q)) =
βγ(2γ + 1)eiθp

x

δt3
∑Nt

k=1 ei(k−m)θq
t + β(2γ + 1)[1 + 2γ − γe−iθp

x − e−iθq
t ]

.

The smoothing property of the operator Sk is analyzed assuming a perfect coarse-grid cor-
rection that removes all low frequency error components and leaves the high frequency error
components unchanged. The smoothing property of Sk is defined by

µ = max{r(P̂ k−1
k (θ)Sk(θ)) : θ ∈ ([−π/2, π/2)× [−π, π))},

where r is the spectral radius and P k−1
k is the projection operator defined on Eθ

k by

P k−1
k φ(θ, ·) =

{
0 if θ = θ(0,0)

φ(·,θ) if θ = θ(1,0) .

The Fourier symbol for a full-weighting restriction operator is given by

Îk−1
k =

1
2

[
1 + cos(θx) 1− cos(θx) 0 0

0 0 1 + cos(θx) 1− cos(θx)

]
,



MULTIGRID FOR INVERSE PROBLEMS WITH PARABOLIC PDES 25

and the linear prolongation operator is given by Îk
k−1(θ) = Îk−1

k (θ)T . The symbol of the
fine grid operator is

Âk(θ) =


ay(θ(0,0)) 0 −δt2/β 0

0 ay(θ(1,0)) 0 −δt2/β

δt 0 ap(θ(0,0)) 0
0 δt 0 ap(θ(1,0))

 ,

where

ay(θ(p,q)) = 2γ cos(θp
x)− e−iθq

t − 2γ − 1 and ap(θ(p,q)) = 2γ cos(θp
x)− eiθq

t − 2γ − 1,

and the coarse grid correction factor is given by

Âk−1(θ) =

[
by(θ(0,0)) −δt2/β

δt bp(θ(0,0))

]
,

where

by(θ(p,q)) = γ cos(2θp
x)/2−e−iθq

t −γ/2−1 and bp(θ(p,q)) = γ cos(2θp
x)/2−eiθq

t −γ/2−1.

Using (6.8) for the definition of the two grid operator we can evaluate the convergence
factor by

η(TGk−1
k ) = sup{r( ˆTG

k−1

k (θ)) : θ ∈ ([−π/2, π/2)× [−π, π))}. (6.9)
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FIG. 6.1. Convergence factors for TS-GCS. Convergence factor as a function of β and γ when (left) the
source term is u [9] and (right) for inverse problem when the source term is u. When the source term is a function
of space, convergence factors are greater than 1 for certain range of β and γ.

In [9] Fourier mode analysis was carried for a spatiotemporal course time and the con-
vergence factors were less sensitive to γ and β. In the present problem, η this is not the case:
for small values of β the method fails to converge (Figure 6.1).

6.3. Numerical results. In Table 6.1 SQMR iterations using LNKS preconditioner P
and multigrid preconditioner MG with P̃ smoother for three regularization parameters are
reported. SQMR converges to the required tolerance in constant iterations using P and MG.
SQMR with MG preconditioner takes less iterations than with P preconditioner. In P one
exact forward and adjoint solve are done at every iteration. Whereas in MG only inexact
forward and adjoint solves are done at every iteration at different levels of multigrid. One



26 S. S. ADAVANI AND G. BIROS

TABLE 6.1
LNKS preconditioner. Performance of preconditioned SQMR solver for a constant regularization parameter.

P represents the number of SQMR iterations with P version of the LNKS preconditioner. MG corresponds to
SQMR iterations using multigrid preconditioner with P̃ as smoother in multigrid. Stopping criterion for SQMR is
‖r‖/‖r0‖ ≤ 10−8. Three cases of regularization are considered β = 10−2, 10−4, 10−6.

Ns ×Nt β P
17 x 8 1e-02 1e-04 1e-06 10 21 36

33 x 16 1e-02 1e-04 1e-06 13 21 51
65 x 32 1e-02 1e-04 1e-06 14 21 54
129 x 64 1e-02 1e-04 1e-06 14 21 56
Ns ×Nt β MG

17 x 8 1e-02 1e-04 1e-06 5 7 12
33 x 16 1e-02 1e-04 1e-06 7 8 16
65 x 32 1e-02 1e-04 1e-06 10 10 17
129 x 64 1e-02 1e-04 1e-06 12 12 17

TABLE 6.2
TS-CGS results for inverse problem. We observe that the convergence is not sensitive to decrease in reg-

ularization parameter for larger regularization parameter. For smaller regularization parameter multigrid solver
diverged (β < 10−4) which agrees with the Fourier mode analysis Figure 6.1.

Ns ×Nt β ρ ry rλ

17 x 8 1e-02 0.091 5e-10 1e-10
33 x 16 1e-02 0.101 3e-10 1e-10
65 x 32 1e-02 0.127 4e-09 5e-10

129 x 64 1e-02 0.130 5e-09 7e-10
17 x 8 1e-04 0.127 5e-08 3e-10
33 x 16 1e-04 0.134 2e-08 1e-10
65 x 32 1e-04 0.130 1e-08 7e-11

129 x 64 1e-04 0.131 2e-08 1e-10

major advantage of solving the problem in full space and using multigrid preconditioner is
that we avoid any forward or adjoint solves which are inevitable in reduced space methods.
Even in this case the computational complexity is O(N2

s ) as we need to do a KKT matvec at
every iteration.

In Table 6.2 convergence factors and residuals of the multigrid solver using TS-CGS
smoother are given. Multigrid solver converges for β = 10−2, 10−4 and diverges in the case
of β = 10−6. This agrees with the convergence factors estimates obtained from Fourier mode
analysis which show that multigrid solver using TS-CGS smoother has convergence factors
greater than 1 for certain combination of β and γ.

7. Conclusions. In this paper, we presented multigrid algorithms for inverse problems
with linear parabolic PDE constraints. Our algorithms are designed for the case in which the
inversion variable depends only in space. Although there is prior work on multigrid for op-
timization problems, there is no work on algorithms for vanishing regularization parameters.
Assuming that we have sufficient information in the data and we need accurate reconstruc-
tions, existing schemes will not have mesh-independent convergence rates. Motivated by this
observation, our main aim was to construct schemes that are robust to vanishing regularization
parameter and allow fast high-fidelity reconstructions.

The key component in our scheme is the multigrid smoother. We use a high-pass filter
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that allows an iterative solver to work exclusively in the high frequency regime. The second
component is to accelerate the computation by using appropriate inexact versions of the re-
duced Hessian. By using an exact high-pass filter and a two-step stationary iterative solver as
a preconditioner we were able to analyze the behavior of the algorithm. The overall scheme
uses a V-cycle multigrid to accelerate a CG solver that iterates in the reduced space. In ad-
dition, we examined alternative smoothing strategies that use cheaper high-pass filters, the
effects of the diffusion, and the effect of the coarse-grid operator. The high-frequency pro-
jections are preferable, but are limited to the cases in which Fourier-type expansions can be
carried through fast transforms.

Our numerical experiments gave promising results and justified the extension of our
scheme to problems with variable-coefficient PDE constraints and partial measurements. Fi-
nally, we combined the reduced space with a full-space solver so that we avoid solving a
forward and an adjoint problem at each optimization iteration.

All the implementations were in MATLAB and no effort was made to optimize the code.
So we refrained from reporting wall-clock times. We should emphasize, however, that, al-
though the method has optimal complexity, the associated constants can be high. In fact, if
the number of the sought frequencies in the reconstructed field is small, then the regulariza-
tion parameter should be set to a relatively large value. In that case one can use much cheaper
solvers, for example schemes based on the King preconditioner and inexact L2 projections.

We would like to caution the reader that we have committed several “inverse crimes”
buy choosing attainable observations, the simplest possible regularization, and by having zero
noise (besides discretization noise). These parameters significantly change the quality of the
reconstruction and can potentially alter the behavior of the solvers. These topics, however,
are beyond the scope of the present paper.

The extension of the results to higher-dimensions are straightforward. The implementa-
tion, however, is not. Further complexity analysis and algorithmic tuning are required to im-
plement an efficient and parallelizable scheme. Most important an optimal method is highly
problem dependent. In the case of sparse partial observations for example, the full space
method has much higher storage requirements than the reduced space approach (this is a rea-
son we pursued reduced space methods). Extension to higher dimensions is ongoing work
and will be reported elsewhere. The method can be used for nonlinear problems, for exam-
ple within a Newton multigrid context. Alternatively, nonlinear multigrid methods can be
considered. The notion of iterating on the high-frequency spectrum using exact projections
and pointwise approximations can be potentially extended to the nonlinear full approximation
multigrid case.
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