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Abstract

We present a framework for modeling gliomas growth and their mechanical impact on the surround-
ing brain tissue (the so-called, mass-effect). We employ an Eulerian continuum approach that results
in a strongly coupled system of nonlinear Partial Differential Equations (PDEs): a reaction-diffusion
model for the tumor growth and a piecewise linearly elastic material for the background tissue. To
estimate unknown model parameters and enable patient-specific simulations we formulate and solve a
PDE-constrained optimization problem. Our two main goals are the following: (1) to improve the
deformable registration from images of brain tumor patients to a common stereotactic space, thereby
assisting in the construction of statistical anatomical atlases; and (2) to develop predictive capabilities
for glioma growth, after the model parameters are estimated for a given patient. To our knowledge,
this is the first attempt in the literature to introduce an adjoint-based, PDE-constrained optimization
formulation in the context of image-driven modeling spatio-temporal tumor evolution. In this paper,
we present the formulation, and the solution method and we conduct 1D numerical experiments for
preliminary evaluation of the overall formulation/methodology.

1 Introduction

Primary brain tumors constitute a significant health challenge, due to their grim prognosis. More than 50%
of primary brain tumors are gliomas. Gliomas are seldom treatable with resection and ultimately progress to
high-grade, leading to death in only 6-12 months [1]. Despite efforts of the clinical and research communities
to improve these statistics, little has been achieved in the past decades in terms of improving treatment of
brain tumors, while frequency of brain tumors seems to be increasing.

One of the fundamental difficulties in treating gliomas is their highly diffusive nature and ability to
infiltrate healthy tissue well beyond the bulk tumor boundary seen in various imaging modalities. Due to
this highly invasive behavior, radical resection of gliomas rarely leads to cure, since cancer cells that have
invaded adjacent healthy tissue proliferate at rates that can reach doubling times of 1 week at advanced
stages [1], and quickly spread the disease to tissue that can be distant to the original tumor mass, especially
if cancer cells find natural pathways of higher diffusivity, such as white matter fiber tracts [2], [3], [4].

Whenever the tumor is not proximal to eloquent areas a margin of normal-appearing tissue surrounding
the tumor can be treated together with the cancer itself for preventive reasons. This approach is often over-
conservative and highly empirical, partly due to the lack of availability of systematic quantitative approaches
to characterizing the spatially heterogeneous patterns of cancer progression, and determining tissue that is
likely to be infiltrated and display cancer recurrence. Therefore, there is need for a better understanding of
the spatio-temporal progression of brain cancer, and for determining predictive factors for cancer invasion,
using phenotypic cancer profiles derived from imaging, histopathology, and potentially other sources, in
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conjunction with relevant genotypic characteristics. Such predictive factors would allow us to apply more
aggressive spatially adaptive treatments.

There has been significant effort to develop mathematical tools that simulate tumor evolution, and to
help quantify the impact of various treatments (surgery, chemotherapy, radiotherapy) on the tumor and on
the host. Simulation tools based on mathematical modeling have the potential to create a framework for
understanding, organizing and applying experimental data acquired during laboratory or clinical studies.
Two major approaches are traditionally highlighted in modeling tumor growth: discrete models [5], [6] and
continuous hypothesis based models [7]. Recently, hybrid formulations have been investigated [8], [9].

The continuous hypothesis along with macroscopic conservation laws (mass, momentum) translates into
a set of partial differential equations. These equations involve a reaction-diffusion framework [10], [11], [12].
Some recent continuous models are multiphase, and account for cellular heterogeneity and mechanical effects
[13], [14]. Cellular Automata (CA) models treat the discrete nature of the actual cells realistically, and
offer good local adaptability in complex situations. Continuous models, on the other hand, may offer more
generality and computational tractability. A mechanical approach has also been attempted to account for
the macroscopic growth of tumors and its impact on the surrounding normal parenchyma [15], [16].

Regardless of their particular nature, all tumor growth models involve a number of parameters (the more
complex the model, the larger the number of parameters) whose estimation for actual simulation purposes
remains a difficult issue. Some attempts have been made [11] to use patient-specific imaging information.
One main limitation is the lack of extensive and systematic fitting of these models using large numbers of in
vivo patient data, as well as the evaluation of their predictive power on independent datasets.

Imaging plays an important role in diagnosis, treatment, and follow-up of brain cancer. Conventional
imaging methods, such as MRI T1-(with and without gadolinium) and T2-weighted sequences, are generally
limited to highlighting the bulk of the main tumor mass, and the surrounding mixture of healthy tissue
with invading cancer and edema. Less conventional methods, such as perfusion and spectroscopy, are very
promising techniques carrying complementary information related to vascularization and tumor biochemistry,
respectively. Finally, Diffusion Tensor Imaging (DTI) provides additional information about the structural
changes and displacement of major white matter fiber tracts caused by brain tumors.

Contributions. In this article we propose a framework for modeling gliomas growth and the subsequent
mechanical impact on the surrounding brain tissue (mass-effect), with estimation of unknown parameters
via PDE-constrained optimization. We target a medical imaging context, where such a framework primarily
aims at the following goals: (1) improving the deformable registration from the brain tumor patient image
to a common stereotactic space (atlas); and (2) developing predictive capabilities for glioma growth. The
first is important for integrative statistical analysis of tumors in groups of patients and surgical planning.
The second is important for general treatment planning and prognosis. Both are long-term goals.

One of the main interests of this article is the experimental comparison of solution algorithms for the
parameter estimation problem associated with the tumor growth and the associated mass-effect. Deformation
(compression) of the neighboring tissue induced by tumor growth is commonly referred to as mass-effect.
This is a crucial phenomenon, which occurs in the majority of brain-tumor patients and causes distortions
(mild to severe) in the various structures (e.g., ventricles, white matter tracts, etc.); it is visible at imaging
and well-documented in the medical literature. The importance of modeling and simulating it for the purpose
of aiding registration and subsequent surgery/treatment planning has been addressed in detail in a series of
publications [16,17,18,19,20,21].

In our approach, glioma growth is modeled via a nonlinear reaction-advection-diffusion equation, with
a two-way coupling with the underlying tissue elasticity equations. Our formulation is fully Eulerian and
naturally allows for updating the tumor diffusion coefficient following structural displacements caused by
tumor growth/infiltration. The overall model is governed by a strongly coupled nonlinear system of partial
differential equations, which makes the numerical solution procedure quite challenging. In a recent companion
piece [22], we employed this model and we solved parameter estimation problems for a handful of tumor
parameters using a direct search method. We did not use sophisticated optimization formulations there,
but rather we assessed the performance of our model on real brain tumor data from 3D MR images. We
illustrate this briefly with an example of such simulations on real brain tumor patient data in section 6.
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In the present paper, we are concerned with developing an adjoint-based PDE-constrained formulation
and assessing the feasibility of using it to invert for a larger number of tumor parameters (e.g., initial
location and profile) in an algorithmically scalable manner. To our knowledge, this is the first attempt in the
literature to introduce a PDE-constrained optimization formulation in the context of image-driven modeling
of spatio-temporal tumor evolution. The work presented is dedicated to overall formulation/methodology,
with emphasis on preliminary analysis and evaluations.

In the inverse estimation phase, we seek find the best set of parameters of a tumor growth model that fits
patient-specific data (e.g., images). However, complex models involve a large number of unknown parameters,
which makes them difficult to calibrate in a clinical setting give the very sparse data (only one or a few scans
per patient.) Here, we choose the simplest model possible with a number of parameters that could be
realistically determined and validated from existing data via inverse estimation. We would like to capture
the spatio-temporal spread of gliomas and subsequent mass effects (mechanical deformations from tumor
growth). 1

The paper is organized as follows: section 2 introduces the tumor growth model (forward problem),
in a fully Eulerian description. Section 3 addresses the associated optimization problem, formulated as a
PDE-constrained optimization (inverse problem). The numerical approximation and solution is discussed in
section 4. In section 5 we discuss numerical experiments and discuss the feasibility of our framework, while
section 6 briefly illustrates some of our simulations on real brain tumor patient data.

2 Modeling growth of gliomas

Continuous model. Our primary focus is on biophysical tumor models that can capture the mass-effect
caused by invasion and infiltration. In [17], we have employed a purely biomechanical tumor model to
simulate tumor mass-effect in 3D MR images. Here we incorporate more physically-realistic tumor growth
models with the assumption that such models may improve predictive capabilities. The modeling framework
consists of a reactive-advective-diffusive mass transport for the tumor cells, coupled with elasticity for the
brain. ( [10], [20], [23]) The mechanical coupling is assumed to be by means of a local pressure field, which
is a (parameterized) function of the tumor cell density [15], [20].

Let ω denote the (fixed) spatial domain occupied by the brain and (0, T ) a specified time interval. Let
U = ω× (0, T ). Without regard to tumor cell heterogeneity, let c = c(x, t) denote the local density of tumor
cells. The general mass balance for the tumor then reads:

∂c

∂t︸︷︷︸
rate of change

= ∇ · (D∇c)︸ ︷︷ ︸
diffusion

−∇ · (cv)︸ ︷︷ ︸
advection

+ r(c)︸︷︷︸
reaction

in U, (1)

Here r(c) is a function representing a reactive term that primarily accounts for tumor cell proliferation
and death; and D is the diffusion coefficient of tumor cells in brain tissue. Experimental evidence [24]
suggests that tumor diffusion may be transversely isotropic in the white matter and isotropic in the grey
matter. Here, for simplicity, we shall consider the case of isotropic diffusion in both the white and the grey
matter, with diffusion coefficients Dw and Dg, respectively. The tumor cell drift velocity v in equation (1)
may well depend on tumor specific mechanisms (chemotaxis, etc. [25]) in reality. In our simplified Eulerian
framework, however, it only accounts for the tumor cells being displaced as a consequence of the underlying
tissue mechanical deformation (e.g., mass-effect). This velocity field will be defined in what follows.

In an Eulerian frame of reference, regarding the brain as a deformable solid occupying the bounded region
1The tumor model parameter estimation via PDE-constrained optimization, is general and not necessarily restricted to

medical imaging data. However, imaging data contains readily available patient-specific information that has not been exploited
so far for calibrating and validating mathematical models of tumor growth.
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ω in space, its motion is described by the following general set of equations:

ρv̇ = ∇ ·T + b in U, momentum (2)

T = T̂(F, Ḟ) in U, constitutive (3)
Ḟ = ∇vF,v = u̇ in U, kinematics (4)
ṁ = 0 in U, material properties. (5)

Here v is the (Eulerian) velocity field, u is the displacement field, T is the Cauchy stress tensor and T̂ denotes
the constitutive law depending on the deformation tensor F = I +∇u and its material time derivative Ḟ. b
in the momentum conservation equation represents distributed forces. Here m denotes material properties
(e.g., Lame’s coefficients in linear elasticity, and the diffusion coefficient D) that are advected with the
underlying material motion. The material time derivative operator of a field (scalar, vector, tensor) f is

ḟ =
∂f
∂t

+ (∇f)v. (6)

We assume that the forces b are pressure-like, directly proportional to the local gradient of the tumor cell
density [15], [20]:

b = −f(c,p)∇c, (7)

where f is a strictly positive p-parameterized function introduced to regulate the strength/location of the
tumor-induced tissue deformation. Equations (1)-(5) augmented with appropriate initial conditions for c,
u,v,F,m and boundary conditions for c,T,u respectively, constitute a coupled, nonlinear system of PDEs.

Additional modeling assumptions. A basic model for the reactive term r(c) in the general diffusion
equation (1) can be formulated in terms of growth (cell mitosis) - characterized by a growth rate a and
competition for resources - characterized by a competition parameter b: r(c, a, b) = ac− bc2. Here, we shall
consider an even more particular form. We introduce a threshold value for the tumor cell density - let it
be denoted by cs, a positive constant corresponding to a saturation level. Then the bulk part of the tumor
is assumed to be characterized by spatial regions where c ∼= cs. More refined distinctions within the tumor
region are possible through additional corresponding thresholding. Let c = c

cs
denote a normalized tumor

cell density. For simplicity, in everything that follows we shall continue to employ the notation c instead of
c, from here on regarded as a normalized tumor cell density. All the terms involving c in (1) and (7) shall
be assumed correspondingly scaled. Then let:

r(c, ρ) = ρc(1− c). (8)

Thus, in regions where c << 1 (infiltration), the customary proliferation term ρc corresponding to exponential
growth at rate ρ is retrieved [10]. Proliferation is assumed to slow down in regions with c getting closer to
1 (tumor bulk), and it eventually becomes a death term if c becomes larger than 1. For simplicity, we
shall employ the linear elasticity theory and approximate the brain tissue as a linear elastic inhomogeneous
material:

T = σ = (λ∇ · u) + µ(∇u +∇uT ), (9)

where λ and µ are the spatially varying Lame’s coefficients (related to Young’s modulus E and Poisson’s
ratio ν). The simplest possible candidate for the function f(c,p) in (7) is a positive (a priori unknown)
constant. However, such a choice does not allow for much flexibility in capturing both strong tumor mass-
effect (generally caused by the tumor bulk) and milder mass-effects (generally caused by tumor infiltration).
While various other possibilities exist, here a smooth expression for f(c,p) is suggested, of the form

f(c,p) = p1e
− p2

cs e−
p2

(2−c)s , (10)

where p = (p1, p2, s) and p1, p2, s are positive constants. This function is monotonically increasing for
0 < c ≤ 1 and has a maximum at c = 1, which corresponds to the tumor bulk part. The parameter p2

regulates both the spatial location and the strength of the mechanical deformation caused by the tumor,
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while p1 is simply a scaling factor.
Remark: since the bulk tumor is characterized by c ∼= 1, we assume that the maximum tumor cell density
does not deviate significantly from 1.

Let us summarize the coupled system of PDEs governing our deformable model for simulating glioma
growth:

∂c

∂t
−∇ · (D∇c) +∇ · (cv)− ρc(1− c) = 0 (11)

∇ · ((λ∇ · u) + µ(∇u +∇uT ))− f(c,p)∇c = 0 (12)

v =
∂u
∂t

(13)

∂m
∂t

+ (∇m)v = 0 (14)

The reduced expression (13) of the Eulerian velocity field v holds in the linear theory, under the assumption
of small strains. Also, given the actual tumor growth scale (cell mitosis), the mechanical deformation may
be approximated as a quasi-static process, which explains the absence of the inertial term in the momentum
conservation equation (12). For concision, we used the collective notation m = (λ, µ,D) in equation (14).
Elastic material properties λ and µ are advected due to the assumption of brain tissue elastic inhomogeneity.
The advection equation for the diffusion coefficient D has been written with the assumption in mind that
diffusivity of tumor cells is different in white and gray matter respectively; therefore, D must also be updated
to reflect the displacement of such structures in the brain.

In a shorthand notation, the system of equations (11)-(14) can be re-written in the following compact
form:

∂φ

∂t
+ Aφ + F(φ) = 0, (15)

where we introduce the collective notations m = (D,λ, µ) for the material properties and φ = (c,u,v,m) for
the model state variables. A in equation (15) is a linear differential operator, while the nonlinear function
F(φ) represents the source/force terms. The following boundary and initial conditions are specified to
complete the system of equations (11)-(14):

∂c

∂n
= 0 on ∂ω × (0, T ) (16)

u = 0 on ∂ω × (0, T ) (17)

This implies that
v = 0 on ∂ω × (0, T ). (18)

c(x, t = 0) = c0(x) prescribed on ω (19)
u(x, t = 0) = 0,v(x, t = 0) = 0 on ω (20)

(D,λ, µ)(x, t = 0) =

 (Dw, λw, µw), x in the white matter
(Dg, λg, µg), x in the grey matter
(Dv, λv, µv), x in the ventricles

(21)

The boundary conditions (16) and (17) come from the assumptions of zero tumor cell flux and zero tissue
displacement at the skull. The advection equations (14) are regarded as initial value problems, with the
initial values (21) piecewise-constant, assigned from the corresponding segmented MR image [17](see figure
1). Equations (11)-(14) with the boundary and initial conditions (16)-(21) represent a mixed parabolic-
elliptic-hyperbolic nonlinear system of PDEs. The numerical solution procedure shall be discussed and
illustrated in section 4.
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Figure 1: Segmented MR image - axial slice.

3 The inverse problem

Motivation. A few references exist in literature regarding tumor cell diffusivity Dw in white matter and Dg

in grey matter, as well as the tumor growth rate ρ [10]. In reality, they are unknown, especially in vivo.
Regarding the elastic parameters in equation (12): various values for the elastic material properties E
(stiffness) and ν (compressibility) of the brain have been used so far in literature [26]. While for white
and grey matter there is a range of values frequently employed in the biomechanics community, there is no
established approach for the ventricles or for the tumor. In [17], we modeled the ventricles as a soft material,
with reasonable results 2. Little is known about material properties of tumors; they should be regarded as
unknown parameters as well.
The set of parameters p in (10) introduced to model the mechanical deformation of the brain tissue following
tumor growth is also unknown.
Another point of interest is to find the spatial location where the tumor initially originated, based on later
MRI scans, which in our model formulation is related to the initial condition (19) on tumor cell density. In
medical image analysis, registration of a tumor-bearing patient image with a normal brain template requires
estimating an initial tumor seed [27].
Here, we consider the case of available serial scans (3D MR images) for a brain-tumor subject at different
moments in time over a time interval of length T . The problem is to find a set of model parameters able to
generate images that ’best match’ the available scans over time (0 < t ≤ T ) by applying the model starting
from the earliest scan (re-labeled as time t = 0). This translates into a PDE-constrained optimization
problem, with the constraints given by the model governing equations (11)-(21). An objective functional
that defines a ’best match’ needs to be constructed.
Note:

1. From a practical point of view, serial scans of human subjects with low grade gliomas progressing
into higher malignancy are difficult to gather, although some clinical studies have been conducted
[28]. These studies are more readily achievable in mouse/rat subjects (e.g. [29]), injected with glioma
cells and kept under observation over a time interval (days-weeks), during which successive scans are

2The ventricles are filled with cerebrospinal fluid. A more correct approach would be to use a fluid-structure interaction approach,
with a Stokesian fluid for the ventricles. For reduced complexity, given other uncertainties in the model, we have opted to model the
ventricles as a soft elastic material.

6



acquired. Such serial data sets can be employed in conjunction with our proposed framework for a
preliminary validation/calibration of the tumor growth model in- vivo.

2. It is likely that in the case of actual human subjects, the earliest scan acquired has a visible tumor
seed present. In this case, for completeness, one may consider augmenting the initial condition (21)
with (D,λ, µ)(x, t = 0) = (Dtum, λtum, µtum) for points x in the tumor region. The newly introduced
set of model parameters (Dtum, λtum, µtum) stands for the diffusivity and elastic material coefficients
inside the tumor.

The objective functional. One functional can be constructed by matching the spatio-temporal evolution
of the (normalized) tumor density c(x, t) predicted by the model with the corresponding tumor probability
maps independently estimated by a trained classifier [30] from the available serial scans for one particular
subject. Let N ≥ 1 be the number of available scans for the subject under consideration. Given estimates
{c∗k(x)}Nk=1 of the tumor density at times {tk}Nk=1, minimize

J =
1
2

N∑
k=1

∫ T

0

∫
ω

δ(t− tk)(c(x, t)− c∗k(x))2dxdt. (22)

A second candidate for the objective functional is related to landmark registration, a common technique
in medical imaging: sets of corresponding landmarks manually tracked in the original scan and in the follow-
up target scans by an expert. Let {xl}l=1,...,L denote a set of L manually-placed landmarks in the initial scan
and {xkl }l=1,...,L; k=1,...,N the corresponding manually-placed landmarks at times {tk}Nk=1 in the follow-up
target scans. Define

J =
1
2

N∑
k=1

L∑
l=1

∫ T

0

∫
ω

δ(t− tk)δ(x− xkl )(ψ(x, t)− xl)2dxdt, (23)

where ψ(x, t) is the solution to the following initial-value problem:

∂ψ

∂t
+ (∇ψ)v = 0

ψ(x, t = 0) = x. (24)

The function ψ is introduced in our Eulerian formulation to keep track of the particles of interest (initial
given landmarks) over time.

We assume that the initial material properties (elastic material properties and diffusion coefficients) are
known. Let the set of inversion variables be g = (ρ, p1, p2). The first-order necessary conditions for
optimality, or KKT conditions, may be derived by introducing an associated Lagrangian functional

L(φ, ζ, g) = J +
∫
U

ζ · (∂φ

∂t
+ Aφ + F(φ, g))dxdt+

a

2
gTg ,

where ζ represents the adjoint (or dual) variable of the corresponding set of state variables φ; g denotes
the inversion parameters; and a ≥ 0 denotes a regularization parameter. By requiring stationarity of the
Lagrangian functional with respect to the adjoint, state, and inversion variables respectively, we obtain the
so-called the KKT optimality conditions [31]:

δL

δζ
= 0 ⇒ state equations (25)

δL

δφ
= 0 ⇒ adjoint equations (26)

δL

δg
= 0 ⇒ inversion equations (27)
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(The notation δL here denotes the first variation of L.) These equations form a set of nonlinear PDEs on
the state, adjoint, and inversion parameters respectively. The adjoint equations are given by

−∂ζ
∂t

+ A∗ζ + F∗(ζ,φ, g) = 0, ζ(t = T ) = ζ0. (28)

Operator A∗ is the adjoint of the A; F∗ involves Frechet derivatives of F. The corresponding boundary
conditions on the adjoint variable(s) ζ, along with the detailed adjoint and inversion equations can be found
in the Appendix. 3:

G(φ, ζ, g) = 0

Let us note that one can include additional constraints on the inversion variables g , for example box con-
straints. In our implementation we use such box constraints to avoid non-physical values of g . For a discus-
sion on the optimality conditions for the case of inequalities see [32]. In our experiments, the regularization
parameter is chosen using a trial-and-error procedure to obtain the minimum discrepancy between the data
and the prediction. In general, the choice of the regularization parameter requires quantification of the noise
in the data and an iterative procedure, for example, using the Morozov discrepancy-principle approach [33].
This work is a preliminary evaluation of the optimization framework; we have attempted to analyze neither
the behavior of the inversion operator nor the effects of noise on the choice of the regularization parameter.

Below we outline the iterative algorithm we use to solve for the optimality conditions (25)–(27).

• Given g , solve the state equations for φ:

∂φ

∂t
+ Aφ + F(φ, g) = 0, φ(t = 0) = φ0

• Given g and φ, solve the adjoint equations for ζ:

∂ζ

∂t
+ A∗ζ + F∗(ζ,φ, g) = 0, ζ(t = T ) = ζ0

• Given φ and ζ, solve the inversion equations to update g :

G(φ, ζ, g) = 0

The adjoint equations (28) (see the detailed equations (A-2) and (A-5), (A-3) in Appendix) are posed
backward in time with a terminal condition at t = T , while the state equations are posed forward in time,
with an initial condition at t = 0. When one discretizes the coupled optimality system (see Appendix for
details), the marching directions in time for the state and the adjoint systems are opposite to each other,
therefore the unknowns are coupled at all time levels.

Gradient-based optimization algorithms require the evaluation of the gradient of the functional. There are
two customary ways of determining this gradient: sensitivity-based approaches and adjoint-based approaches.
Evaluation of the gradient through sensitivities requires solving a number of sensitivity systems equal to the
number of inversion variables [31] (per optimization iteration). Evaluating the gradient through adjoints only
requires one solve of the adjoint system (per optimization iteration), regardless of the number of inversion
variables [31]. Finite differences can be used for gradient approximation, but this is an again an expensive
approach: at each optimization iteration it requires a number of the forward problem solves equal to the
number of inversion variables.

4 Discretization and Numerical Solution

Our goal is to design efficient and robust schemes for solving both the forward problem (equations (11)–(21))
and the adjoint problem (e.g., equations (A-2)-(A-5) in Appendix). In the present paper we discuss only one
dimensional numerical experiments.4

3The explicit inversion equations are given in Appendix (see equations (A-6)).
4The 3D MRI-based simulations are work-in-progress and will be reported elsewhere; the biomechanics-only version (no

reaction-diffusion for the tumor) has already been implemented and reported in [17], [34].
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The fictitious domain method. Brain has complex geometry. Solving PDE’s in such a domain is chal-
lenging. Various techniques exist for solving PDEs in complex domains: unstructured meshes that conform
to the irregular domain boundary in finite element methods; immersed interface/ghost-fluid methods in fi-
nite volume (FV)/finite difference methods (FD); or integral equation methods. In [17, 34], we successfully
employed a fictitious domain. We use a similar approach here. Details on implementing a fictitious domain
method in the present context are given in the Appendix.

Numerical approximation: regular grids and fractional time steps. For simplicity, we use an operator-
splitting approach for the forward and adjoint problems. The independent operators correspond to the
advection, diffusion and reaction processes [35], [36]; and the elasticity operator. Each operator is handled
independently. We have implemented the diffusion and elasticity elliptic solvers, and two advection solvers
conservative term in the mass transport ( the ∇ · (cv) term in (11)) and the other for the non-conservative
transport (the (∇ψ)v term in (24)).

Consider the forward problem (11)-(21). Let φ = (c,u,v, D, λ, µ) denote the vector of unknowns.
Let ∆,A1,R denote the diffusion, advection and reaction operators in the diffusion equation (11), and A2

denote the advection operator in equations (14). These operator notations will be preserved in the adjoint
problem as well. If φn = (cn,un,vn, Dn, λn, µn) is the solution at time t = tn, then a simple way to update
the solution φn+1 at the next time step tn+1 = tn + ∆t is as follows:

• Solve the advection equations (14) using an explicit upwind scheme over time ∆t to obtain (Dn+1, λn+1, µn+1).

• Solve the diffusion equation (11) using a simple fractional step method [35]:

– Solve ∂c
∂t = A1(c,v) over time ∆t with data (cn,vn), using an explicit conservative upwind scheme,

to obtain c∗;
– Solve ∂c

∂t = ∆(c,D) over time ∆t with data (c∗, Dn+1), using an implicit scheme, to obtain c∗∗;

– Solve ∂c
∂t = R(c) over time ∆t with data c∗∗, using an implicit scheme, to obtain cn+1.

• Solve the elasticity equation (12) with data (cn+1, λn+1, µn+1) to obtain un+1 and update the velocity
vn+1 using backward time-differencing in equation (13).

A similar description of the proposed numerical solution algorithm for the adjoint problem can be found in
the Appendix. 5

5 Numerical Experiments

In this section, the 1D versions of the forward problem (11)-(21) and adjoint problem (A-2)-(A-5) are
employed. In the 1D case, let ω = [x1, x2] , 0 ≤ x1 < x2 <∞ denote a bounded interval on the real positive
axis. 6 The 1D version of the elasticity equation (12), with s = 1, reads

∂

∂x
(µe

∂u

∂x
)− p1e

− p2
c e−

p2
(2−c)

∂c

∂x
= 0 in ω × [0, T ], (29)

In the inhomogeneous case:

µe(x, t = 0) =
{
µew, x in S1 (’white matter’),
µeg, x in S2 (’grey matter’), (30)

with S1 and S2 subsets of the 1D spatial domain ω such that S1∪S2 = ω.(The homogeneous case is retrieved
by setting µe(x, t = 0) = µew in ω.) For convenience here, we choose to further scale µe and p1 in equation
(29) by a factor equal to µew. We keep the same notation as in (29), with µew = 1, while the values of µeg
and p1 are accordingly scaled. 7

Remarks:
5Higher-order numerical schemes can be employed for advective steps. (e.g., ENO/WENO schemes [37], Strang splitting [35])
6 Length is measured in cm’s and time in days.
7Typically, values of µe for the actual brain tissue are of the order of thousands Pa, which leads to corresponding values of

the parameter p1 in the same range to produce some mass-effect.
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• As discussed in [10], the inter-play between the diffusion coefficient D and the tumor growth rate ρ in
equation (11) allows the model to simulate multiple tumor grades: high-grade (high ρ and high D),
intermediate grade (high ρ and low D or low ρ and high D) and low grade (low ρ and low D). Here,
we will also be interested in the corresponding mass-effect exerted by the growing tumor. To have
such an effect we use a low D and a (relatively) high ρ combination, which is likely to produce steeper
gradients ∂c

∂x in the force term of the elasticity equation (29).

• In the 1D case, there is no actual need to employ a fictitious domain approach, but we use it here in
order to test the proposed approach on model problems.

• The numerical scheme is first-order accurate in space-time (O(∆x,∆t)). This was confirmed in a series
of numerical experiments. A set of results can be found in the Appendix. 8

Test-cases for the overall optimization framework. In all the test-cases presented here, the following have
been commonly used, unless otherwise specified: the physical spatial domain [2, 8] is embedded on the larger
fictitious domain (see Appendix) [0, 10]; a uniform spatial discretization with ∆x = 10/64 and a contrast
factor ε = (∆x)2 (see below material properties); a time span from [0, T ], where T = 360, with a time-step
∆t = 0.5; an inhomogeneous material with

(D,µe)(x, t = 0) =

 (Dw, µew), x ∈ [3.5, 6.5]
(Dg, µeg), x ∈ [2, 3.5) ∪ (6.5, 8)

(εDg, µeg/ε), x ∈ [0, 2) ∪ (8, 10),

Here we have set Dw = 0.0001, Dg = 0.00005, µew = 1, µeg = 1.2. 9. Our implementation is done in
MATLAB; we used an in-house optimizer and MATLAB’s Optimization Toolbox. Our goals are to test and
evaluate the performance of an adjoint-based optimization method within the proposed framework, in terms
of correctness, number of optimization iterations, and scalability with respect to the number of inversion
variables.

We have set bounds on the inversion parameters to avoid non-physical values during the course of the
optimization iterations. We first optimize using a direct search method, which is a version of the MATLAB
simplex-based function ’fminsearch’, modified to allow bounds. The corresponding run-time for the direct
search method is used as benchmark. Our main interest lies in a gradient-based optimization, with the
gradient computed via the adjoints. For comparison purposes, we also optimize using a gradient-based
method with the gradient computed via finite differences (FD). In both gradient-based optimizations, we
use the ’fmincon’ function in MATLAB, with lower and upper bounds imposed. In our test we only retrieve
local minima. The target tumor densities have been chosen either by selecting g and solving for a model-
generated density, or by a-priori choosing an “arbitrary” density distribution.

The default value of the regularization parameter for the cases with finite (low)-dimensional optimization
parameter was a = 0; however, in the experiments where convergence was observed to be slow or failed
to occur after the specified maximum number of iterations, we found a ’good’ value 0 < a ≤ 0.1 by trial-
and-error (bisection-like method), on a case-by-case basis. Here by a ’good’ value, we understand a value
for which the convergence was observed experimentally to improve (in terms of the number of iterations to
convergence). For the one infinite-dimensional case we consider (test-case 5 below, where we invert for the
initial tumor density regarded as a space-dependent function), the default regularization parameter a needs
to be a positive number (also determined by trial-and-error) to result in a well-posed problem [39].

The termination tolerances given in the experiments discussed below correspond to the Matlab built-in
options: the termination tolerance on the optimization variable refers to the Matlab option ’TolX’, while the
termination tolerance on the function value to the Matlab option ’TolFun’. These termination tolerances
were varied in all our experiments; however, below the tolerances reported in the text, no significant changes
in the optimization results were observed, at the expense of increasing the number of iterations.

8 When the advection equations (14) are solved with piecewise constant initial data, the order of accuracy can drop to

O(
√

∆(x, t)) [38], even though the numerical method is formally first order accurate.
9 Our choice is consistent with the assumption that tumor diffusion is faster in the white matter, while the grey matter can

be regarded about 1.2 times stiffer than the white matter. [17], [20]
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ρ p1 p2 Relative run time
Direct search 0.0926 0.214 0.00002 1

FD gradient-based 0.093 0.207 0.0 0.36
Adjoint gradient-based 0.093 0.203 0.0 0.43

Table 1: Test-case 1: optimization results summary. Three optimization parameters: (ρ, p1, p2). The problem is solved in three
different ways. The run time for the direct search method used as benchmark. The corresponding converged solution ρ,p1,p2 is
shown for each method. The two gradient-based methods exhibit similar performance, about 2.5 times faster than the direct search
method. The number of iterations to convergence is 100 for the direct search, 12 for the FD gradient-based and 15 for the adjoint
gradient-based run.

• Test-case 1: three parameter (ρ, p1, p2) optimization, arbitrary target tumor density. Consider first the
case of a Gaussian tumor distribution given by

c∗(x, t) =
t

T
e−(x−5)2 , x ∈ [2, 8], t ∈ [0, T ], (31)

with T = 180. The initial tumor density is prescribed as

c(x, t = 0) =
{

0.0001, x ∈ [4.75, 5.25]
0, otherwise.

The objective functional in this case is of the form (22):

J1 =
1
2

∫ T

0

∫
ω

(c(x, t)− c∗(x, t))2dxdt+
a

2
(ρ2 + p2

1 + p2
2).

Here a ≥ 0 is just a regularization parameter; in certain cases, a ’small’ positive value of a helps
convergence—its value is decided by trial-and-error. We want to find the set of model parameters
g = (ρ, p1, p2) leading to a tumor density c(x, t) that best matches the target tumor density c∗(x, t).
The results of the optimization procedure are summarized in table 1. The initial guess was set to
g0=(0.001, 0.001, 0.001), and the following lower and upper bounds were imposed: gmin = (0, 0, 0),
gmax = (0.5, 1.5, 0.5). The stopping criteria that have been used in all three methods are: termination
tolerance on the optimization variable (g) set to 10−4 and the termination tolerance on the function
value set to 10−4. The regularization parameter here was a = 0. The final value of the objective
functional was around 9.51 in all three cases, and the ’match’ at the final moment of time t = T is
shown in figure 2.

• Test-case 2: three parameter (ρ, p1, p2) optimization, model-generated target tumor density. Consider
now an optimization problem similar to the one in test-case 1, but this time with a target tumor
density c∗(x, t) generated via the forward problem, for a choice of the three model parameters g =
(ρ, p1, p2) = (0.05, 1.2, 0.1). The model-generated target tumor density is shown in figure 3, marked
with circles. The initial tumor density and objective functional are similar to those in the test-case
1 above. This is a typical test case, where the inverse problem is solved to investigate if/how close
the original values of the parameters (ρ, p1, p2) can be retrieved. The answer is not obvious, since the
solution of the inverse problem might not be unique, on the one hand, and since we are only able to find
local minima here, on the other. The results of the optimization procedure for this case are summarized
in table 2. The initial guess was g0=(0.001, 0.001, 0.001), with lower and upper bounds gmin = (0, 0, 0),
gmax = (0.5, 1.5, 0.5). The stopping criteria that have been used in all three methods for this case are:
termination tolerance on the optimization variable (g) set to 10−6 and the termination tolerance on the
function value set to 10−6. The regularization parameter here was a = 0 as well. The original parameter
values (ρ, p1, p2) = (0.05, 1.2, 0.1) were very closely retrieved by all three optimization methods, with
final values of the objective functional of the order of 10−7. As we will see in the test-case 3. following,
this is not always the case.
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Figure 2: Test-case 1: the model-predicted tumor density corresponding to the optimized set of parameters (ρ, p1, p2)
and the (a priori unattainable) target tumor density c∗(x, T ) given by equation (31) at the final moment of time t = T .
This is the closest the tumor density generated by model can get to the prescribed Gaussian profile.

• Test-case 3: three parameter (ρ, p1, p2) optimization, model-generated target landmarks. The tar-
get landmarks are generated via the forward problem, for a choice of the three model parameters
(ρ, p1, p2) = (0.05, 1.2, 0.1). For simplicity, we only consider the target landmarks at the final time t =
T . We considered a set of eight landmarks. The initial landmark position is given by: {Xl}l=1,2,...,8 =
[3, 4, 4.5, 4.75, 5.25, 5.5, 6, 7] and the corresponding (target) position at t = T , estimated via the for-
ward problem, is {xl}j=1,2,...,8 = [2.6955, 3.6963, 4.374, 4.7044, 5.3397, 5.6849, 6.3385, 7.2632]. They are
shown in figure 4. The maximum landmark displacement is 0.3386 (cm). The objective functional we
consider in this case is of the form (23):

J2 =
1
2

8∑
l=1

∫
ω

δ(x− xl)(ψ(x, t)−Xl)2dx+
a

2
(ρ2 + p2

1 + p2
2).

As in the test-case 2, here we solve the inverse problem to investigate if the original values of the
parameters (ρ, p1, p2), used in the forward problem to generate the target data, can be retrieved. As
discussed in section 3, in this case an additional advection equation (see equation (24)) for the variable
ψ must be solved in the forward problem and correspondingly in the adjoint problem (see equation
(A-9) in Appendix).

The results of the optimization are summarized in table 3. The initial guess in this case was g0=(0.1, 0.1, 0.1),
with lower and upper bounds gmin = (0, 0, 0), gmax = (0.5, 1.5, 1.0). The stopping criteria used in all
three methods are: 10−4 for the termination tolerance on the optimization variable and 10−4 for the
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Figure 3: Test-case 2: the model-generated tumor density at final time t = T , corresponding to the prescribed model
parameters (ρ, p1, p2) = (0.05, 1.2, 0.1), by varying the mesh size and the time-step. We illustrate the stable behavior
of the forward problem numerical solution with mesh/time-step refinement.

termination tolerance on the function value. A good regularization parameter to speed-up convergence
here was found (trial-and-error) to be a = 0.001. As it can be seen from table 3, in this case two of
the three original parameter values (p1, p2) = (1.2, 0.1) were not too closely retrieved by any of the
three optimization methods, which did converge with the specified tolerance, yielding final values of the
objective functional around 0.03. Strengthening the convergence criteria did not produce significant
changes, except increasing the number of iterations. In figure 5, the landmark position at time t = T
calculated for the values of the parameters (ρ, p1, p2) shown in table 3 is illustrated. The match with
the actual target landmarks is very good, with the following maximum (absolute) errors: 0.0157 (cm)
for the direct search solution, 0.0194 (cm) for the FD gradient-based solution and 0.0210 (cm) for the
adjoint gradient-based solution.

In this case, the solution of the inverse problem is not unique; in terms of the underlying model physics,
the interplay between the elastic force parameters p1 and p2 in equation (10) can lead to relatively
similar elastic deformations for different sets (p1, p2). Unless a global optimizer is employed, one can
only guarantee to find local minima. Additional information about the tumor itself, whenever available
(e.g., appearance, grade, etc.) should be used to constrain the problem toward sorting out the solution
that is most plausible physiologically.

• Test-case 4: six parameter (ρ, p1, p2, c1, c2, c3) optimization, model-generated target tumor density. In
test-cases 1-3, the initial tumor density was assumed given. Suppose now that in addition to the three
parameters (ρ, p1, p2) we have optimized for so far, we also want to optimize for the initial tumor seed.
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ρ p1 p2 Relative run time
Direct search 0.0500 1.1999 0.0999 1

FD gradient-based 0.0499 1.1980 0.0994 0.41
Adjoint gradient-based 0.0500 1.2018 0.1004 0.43

Table 2: Test-case 2: optimization results summary. Three optimization parameters: (ρ, p1, p2). The optimization problem
is solved in three different ways, with the corresponding converged solution shown. The original parameter values (ρ, p1, p2) =
(0.05, 1.2, 0.1) very closely retrieved. As in test-case 1 before, the two gradient-based methods here show similar performance, about
2.5 times faster than a direct search.

ρ p1 p2 Relative run time
Direct search 0.0481 0.938 0.0191 1

FD gradient-based 0.0480 0.8913 0.0106 0.2
Adjoint gradient-based 0.0478 0.9133 0.0232 0.5

Table 3: Optimization results for test-case 3, with the objective functional based on landmarks. Three optimization parameters:
(ρ, p1, p2). Optimization problem solved in three different ways, with the corresponding converged solution shown. The original
parameter value ρ = 0.05 very closely retrieved, while the other two parameters (p1, p2) not so closely matched. In this particular
case, for the adjoint gradient-based method, a trust-region search performed better than a line-search in terms of recovering the
target landmarks within the specified tolerance, but slower.

In practical medical applications such as registration of tumor-bearing brain images, estimation of the
initial tumor seed is of importance [27]. In this experiment, the tumor seed is parameterized as

c0(x) = c(x, t = 0) = c1e
−(x−c2)2

2c3 ,∀x, (32)

where (c1, c2, c3) are three a priori unknown parameters, with c1, c3 > 0. These three parameters define
the initial ’tumor seed’: c2 defines the center, c3 an initial ’radius’, while c1 is simply a magnitude scaling
factor. This parameterization is a modeling assumption since tumors do have Gaussian distributions
in reality.

As in test-case 2 before, consider again the case of a target tumor density c∗(x, t) generated via the for-
ward problem, now for a choice of the six model parameters (ρ, p1, p2, c1, c2, c3) = (0.05, 1.2, 0.1, 0.0004, 5, 0.06).
The terminal time in this case is T = 300. The objective functional is similar to that in the test-case
2 above, plus an additional regularization term for the three newly introduced parameters:

J1 =
1
2

∫ T

0

∫
ω

(c(x, t)− c∗(x, t))2dxdt+
a

2
(ρ2 + p2

1 + p2
2 + c21 + c22 + c23).

Accordingly, the inversion equations (A-6) in the Appendix must be augmented with three additional
inversion equations, corresponding to the newly introduced parameters (c1, c2, c3):

ac1 −
∫
ω

α(x, t = 0)
∂c0
∂c1

dx = 0

ac2 −
∫
ω

α(x, t = 0)
∂c0
∂c2

dx = 0

ac3 −
∫
ω

α(x, t = 0)
∂c0
∂c3

dx = 0

We solved the inverse problem to investigate if/how close the original values (0.05, 1.2, 0.1, 0.0004, 5, 0.06)
of the six parameters (ρ, p1, p2, c1, c2, c3) can be retrieved. The results are summarized in table 4. The
initial guess was g0 = (0.001, 0.001, 0.001, 0, 4, 0.001), with lower and upper bounds (0, 0, 0, 0, 4, 0),
(0.2, 0.5, 1.5, 0.001, 6, 0.1). The stopping criteria in all three methods were: 10−6 for the termination
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ρ p1 p2 c1 c2 c3 Relative run time
Direct search 0.0535 0.9819 0.006 0.00053 4.9994 0.0132 1

FD gradient-based 0.0500 1.1700 0.0920 0.000398 4.9997 0.0596 0.52
Adjoint gradient-based 0.0498 1.1689 0.0903 0.000412 4.9998 0.0593 0.21

Table 4: Optimization results for test-case 4. Six optimization parameters: (ρ, p1, p2, c1, c2, c3). Optimization problem solved
in three different ways, with the corresponding converged solution shown. The original parameter values (ρ, p1, p2, c1, c2, c3) =
(0.05, 1.2, 0.1, 0.0004, 5, 0.06) closely retrieved by the gradient-based methods, not so well by the direct search. The adjoint-based
method exhibits best scalability with respect to the number of inversion variables (see also table 5). Number of iterations: 486 for
the direct search, 67 for the FD gradient-based and 57 for the adjoint gradient-based.

ρ p1 p2 Relative run time
Direct search 0.0499 1.1670 0.0916 1

FD gradient-based 0.0499 1.1441 0.0854 0.37
Adjoint gradient-based 0.0499 1.1015 0.0744 0.25

Table 5: Optimization results for test-case 4, with only three optimization parameters: (ρ, p1, p2); (c1, c2, c3) = (0.0004, 5, 0.06)
kept fixed. Optimization problem solved in three different ways, with the corresponding converged solution shown. The original
parameter values (ρ, p1, p2) = (0.05, 1.2, 0.1) reasonably retrieved by all three methods.

tolerance on the optimization variable and 10−6 for the termination tolerance on the function value. A
good value of the regularization parameter for the gradient-based optimization in this case was found
(trial-and-error) to be a = 0.005.

The original parameter values (ρ, p1, p2, c1, c2, c3) = (0.05, 1.2, 0.1, 0.0004, 5, 0.06) were closely retrieved
by the gradient-based methods, with exit values of the objective functional around 0.06. The direct
search method in this case performed poorly.

For a better assessment of scalability, we repeated the above test, this time keeping the three initial tu-
mor parameters (c1, c2, c3) fixed, with values (0.0004, 5, 0.06), while optimizing for the remaining three:
(ρ, p1, p2). The initial guess ((0.001, 0.001, 0.001)), the lower/upper bounds ((0, 0, 0) and (0.2, 0.5, 1.5))
and the stopping criteria were kept the same as above. The optimization results are summarized in
table 5: Comparing the run times in tables 4 and 5, it is apparent that the adjoint-based method
scales best with the number of inversion variables. By “scales”, we mean that the cost of the gradient
evaluation is equal to one forward and one adjoint solve, but the cost of the gradient evaluation for
the finite-difference requires as many forward solves as the size of the inversion parameters.

• Test-case 5: 18 inversion variables, model-generated target tumor density. We use the same target
density as in the test-case 2. In this test, we invert for the initial tumor profile c(x, t = 0) = c0(x)
everywhere in the actual physical domain. The target tumor density is computed using the forward
solver in a coarser spatial mesh: ∆x = 10/32, corresponding to 33 nodes in the larger embedding
domain [0, 10], from which only 18 are actually inside [2, 8]. ∆t = 0.5 as before. In this case, we want
to invert for the 18 corresponding nodal values of c0(x).

The objective functional is:

J1 =
1
2

∫ T

0

∫
ω

(c(x, t)− c∗(x, t))2dxdt+
a

2

∫
ω

c0(x)2dx,

(a regularization parameter), with the inversion parameters expressed in terms of the adjoints [31] as:

ac0(x)− α(x, t = T ) = 0,∀x. (33)

We started with an initial guess of c0(x) = 0,∀x; the lower bounds were set equal to 0 everywhere,
while the upper bounds were set to 1 inside the actual physical domain [2, 8] and 0 outside, in the
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fictitious domain. The regularization parameter here was a = 0.1 and the stopping criteria 10−8

for the termination tolerance on both the optimization variable and the function value. The inverse
problem in this case has been solved using only gradient-based methods, with the gradient estimated
via finite-differences and adjoints, respectively. The following run times were recorded: 100s for the
adjoint-based method and 1700s for the FD-based method. The corresponding converged solutions are
shown in figure 7.

6 Illustration of simulations on real brain tumor patient MR im-
ages

We include this last section here for the purpose of highlighting the potential of the proposed model to
capture well real brain patient data. Applying the overall methodology proposed in this paper to real brain
tumor patient MR images is on-going work [22].

The simulations illustrated here are for a human brain tumor patient, with low-grade glioma progressing
into higher malignancy. Two T1 MRI scans with approximately 2.5 years in-between were available. 21
pairs of corresponding landmark points were manually identified by an expert human rater in the starting
(original scan, when patient first diagnosed with low-grade glioma) and target (correspondingly aligned
scan 2.5 years later) 3D MR images. Segmentation of the images in this case included only white matter
and ventricles, for which we assumed fixed elastic properties (stiffness and compressibility, respectively)
Ewhite = 2.1KPa,Eventricles = 500Pa, νwhite = 0.45, νventricles = 0.1 [17,22].

Given model-generated landmarks and manually-tracked landmarks, we seek to find a deformation that
minimizes the mismatch between the predicted and the actual deformation (see Figure 8).

We estimated an approximate initial tumor location (center and size) from the early scan and inverted for
four parameters only: initial tumor density magnitude, tumor cell diffusivity in white matter, tumor growth
rate and tumor mass-effect strength (parameter p1 in equation 10). The results, illustrating the behavior
of our model with optimized parameters, are depicted in figure 9. Guided by the deformation of only 21
pairs of landmarks, the model appears able to capture reasonably the tumor behavior in the actual patient.
This is particularly visible in the axial slice (figure 9 - top), in the ventricle compression - relatively similar
in the actual patient image and the model-generated image. In the sagittal view (figure 9 - bottom), the
deformation of the corpus calosum produced by the growing tumor in the actual patient image is visibly
similar to the model-generated one.

For such preliminary assessment of the model behavior on real brain tumor patient data, we have used
APPSPACK, an optimization library from the Sandia National Laboratories [40, 41, 42]. The forward problem
in this case was numerically solved using a spatial discretization with 653 nodes and five equal time steps.

The optimization variables should lie within a physiological range. Their precise range, however, is
unknown. For example, the reaction term in our tumor model is a crude approximation of tumor growth.
Second, even if the model were correct, there would be significant inter-individual variability. We used
guiding values from existing literature for the tumor cell diffusivity in white and grey matter [10], but we
had to use numerical experiments to determine reasonable ranges for ρ and p1.

The results of our optimization experiments support an optimization method with the gradient of the
objective functional estimated in terms of the adjoint variables, which is efficient and scales well with the
number of inversion variables (design parameters), unlike a direct search method. Regarding an optimization
method with the approximation of the gradient via finite differences (FD), it is generally comparable with an
adjoint-based method for a relatively small number of design parameters (e.g., one to three/four parameters
to be estimated)10 However, when the number of design variables is increased (e.g., to six or more), an adjoint-
based optimization method remains most efficient. Within our proposed framework, it is of fundamental
importance to design an optimization procedure that allows flexibility in introducing additional unknown
parameters to be estimated (e.g., material properties, more complex tumor growth models).

10In some of these cases, the FD gradient-based method might work somewhat faster than the adjoint-based method, since the
numerical errors in the solution of the forward problem are further propagating in the adjoint equations.
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7 Discussion and conclusions.

A variety of mathematical models for the spatio-temporal evolution of solid tumors have been developed over
the past three decades [7]. These models involve a number of unknown parameters that are typically very
difficult to estimate in-vivo via existing experimental and imaging set-ups. One way around this problem is
inverse estimation, i.e., based on data from a patient, find the best set of parameters of a tumor growth model
that fits the patient’s data (e.g. images). Complex models, however, involve a large number of unknown
parameters. This makes complex models difficult to calibrate in clinical setting due to limited number of
images that capture the tumor time evolution. 11

In this article we focused on models with a number of parameters that could be realistically determined
and validated from existing data, via inverse estimation. The key aspects that we are interested in capturing
are: spatio-temporal spread of gliomas and mechanical deformations from tumor growth.

We proposed an Eulerian framework for modeling gliomas growth and the subsequent mechanical impact
on the surrounding brain tissue (mass-effect), with estimation of unknown parameters via PDE-constrained
optimization. To our knowledge, this is the first attempt to introduce an adjoint-based, PDE-constrained
optimization formulation in the context of modeling spatio-temporal tumor evolution. We introduced numer-
ical schemes for the solution of the systems of nonlinear PDEs governing the forward, adjoint, and inverse
problems. The numerical solution procedure is being successfully applied on 3D images of brain tumor
subjects. The criteria in designing the numerical schemes, were computational cost and robustness.

Through a series of 1D experiments, which are better suited for analysis, comparison and proof-of-concept,
we showed the advantage of estimating the gradient of the objective functional in terms of the adjoints for
solving the optimization problems. Evaluating the gradient through adjoints requires one solve of the adjoint
system (per optimization iteration) regardless of the number of inversion variables. This provides excellent
scalability with respect to the number of control variables.

Effects of treatment (chemotherapy, radiotherapy) and recurrence of gliomas after resection [23], can
be incorporated in the current framework. Tumor model parameter estimation via PDE-constrained opti-
mization, is general and not necessarily restricted to medical imaging data. Imaging data contains readily
available patient-specific information that has not been exploited so far for calibrating and validating math-
ematical models of tumor growth. The present paper was dedicated to formulation and methods. Numerical
experiments have been presented, for a preliminary evaluation of the overall formulation/methodology. The
benefits of the adjoint-based optimization methods in terms of scalability with the number of control variables
have been highlighted through a series of test-cases. We are currently working on the full 3D MRI-based
simulations [22].

APPENDIX

A. The Karush-Kuhn-Tucker Optimality conditions
The first-order necessary optimality conditions for optimality, or KKT conditions, may be derived by

introducing an associated Lagrangian functional:

L1(φ1, ζ1, g1) = J1 +
a

2
(ρ2 + p2

1 + p2
2) +

∫
U

α(
∂c

∂t
−∇ · (D∇c) +∇ · (cv)− ρc(1− c))dxdt+∫

U

β · (∇ · ((λ∇ · u) + µ(∇u +∇uT ))− p1e
− p2

cs e−
p2

(2−c)s ∇c)dxdt+∫
U

ξ · (v − ∂u
∂t

)dxdt+
∫
U

γD(
∂D

∂t
+∇D · v)dxdt+∫

U

γλ(
∂λ

∂t
+∇λ · v)dxdt+

∫
U

γµ(
∂µ

∂t
+∇µ · v)dxdt,

(A-1)

11When a glioma if found it is typically, immediately treated.
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where the variables ζ1 = (α,β, ξ, γD, γλ, γµ) represent the adjoint (dual) variables of the corresponding state
variables φ1 = (c,u,v, D, λ, µ) and g1 = (ρ, p1, p2) are the inversion variables.

By requiring stationarity of the Lagrangian functional with respect to the adjoint variables, to the states,
and to the inversion parameters respectively, the KKT optimality conditions in this case are obtained,
consisting of the forward problem defined by equations (11)-(21). The adjoint equations

− ∂α

∂t
−∇ · (D∇α)− v · ∇α− αρ(1− 2c) + f(c, p1, p2)∇ · β +

N∑
k=1

δ(t− tk)(c− c∗k) = 0 in U

α(x, t = T ) = 0 in ω
∂α

∂n
= 0 on ∂ω × (0, T ). (A-2)

∇ · ((λ∇ · β) + µ(∇β +∇βT )) +
∂ξ

∂t
= 0 in U

β = 0 on ∂ω × (0, T )
ξ(x, t = T ) = 0 in ω
β(x, t = T ) = 0 in ω. (A-3)

−c∇α+ γD∇D + γλ∇λ+ γµ∇µ+ ξ = 0 in U. (A-4)

− ∂γD
∂t

−∇ · (γDv) +∇c · ∇α = 0 in U

−∂γλ
∂t

−∇ · (γλv)− (∇ · u)I · ∇β = 0 in U

−∂γµ
∂t

−∇ · (γµv)− (∇u +∇uT ) · ∇β = 0 in U

γD(x, t = T ) = 0 in ω
γλ(x, t = T ) = 0 in ω
γµ(x, t = T ) = 0 in ω. (A-5)

And the inversion equations:

aρ−
∫
U

αc(1− c) dxdt = 0

ap1 +
∫
U

β · ( ∂f
∂p1

)∇c dxdt = 0

ap2 +
∫
U

β · ( ∂f
∂p2

)∇c dxdt = 0. (A-6)

In the case of a landmark-based functional we only have a few changes: The forward problem consists
of (11)-(21) plus equation (24); The adjoint equations consist of (A-4), (A-5), and the following reduced
version of (A-2)

− ∂α

∂t
−∇ · (D∇α)− v · ∇α− αρ(1− 2c) + f(c, p1, p2)∇ · β = 0 in U

α(x, t = T ) = 0 in ω
∂α

∂n
= 0 on ∂ω × (0, T ),

(A-7)
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an augmented version of (A-4) given by

−c∇α+ γD∇D + γλ∇λ+ γµ∇µ+ γψ∇ψ + ξ = 0 in U, (A-8)

plus an additional equation for the newly introduced adjoint variable γψ

− ∂γψ
∂t

−∇ · (γψv) +
N∑
k=1

L∑
l=1

δ(t− tk)δ(x− xkl )(ψ(x, t)− xl) = 0 in U

γψ(x, t = T ) = 0 in ω;
(A-9)

the inversion equations remain the same.
B. The fictitious domain method.

In the fictitious domain method, the target domain ω is embedded on a larger computational rectangular
domain (box) - let it be denoted by Ω from here on. The PDEs originally defined on ω must be appropriately
extended to Ω, such that the true boundary conditions prescribed on ∂ω are approximated [17]. In our case,
both in the forward problem (equations (11)-(21)) and the adjoint one (e.g. equations (A-2)-(A-5)), we only
have to deal with homogeneous Neumann/Dirichlet boundary conditions on ∂ω, which makes extension to
Ω straight-forward. Thus, let us introduce the following definitions:

Dε =
{

D, in ω
εD, in Ω\ ω (B-1)

(λ, µ)ε =
{

(λ, µ), in ω
1
ε (λ, µ), in Ω\ ω (B-2)

where ε > 0 is a ’small’ positive number, regarded as a penalty parameter. Then the forward diffusion
equation (11) on ω is being replaced by its extension to Ω, with D replaced by Dε and v = 0, ρ = 0 in
Ω\ ω. The zero flux boundary condition (16) is now imposed on ∂Ω. The forward elasticity equation (12)
on ω is being replaced by its extension to Ω, with (λ, µ) replaced by (λ, µ)ε and f ≡ 0 in Ω\ ω. The zero
displacement boundary condition (17) is re-imposed on ∂Ω. Similar extensions can be employed for the
adjoint equations (e.g. equations (A-2)-(A-5) in Appendix). In the end, both the forward problem and the
adjoint problem can be equivalently replaced by their extensions on the regular domain Ω (where the actual
numerical discretization in space shall be performed). It is expected [43] that a weak solution exists to each
problem, which is smooth on ω and Ω\ ω respectively, and satisfies the actual boundary conditions on ∂ω
in the limit ε→ 0. The expected order of convergence is at least O(

√
ε) (in H1) [44].

C. Numerical solution procedure for the adjoint equations.

The adjoint problem is given by (A-2)–(A-5) with ζ = (c,u,v, D, λ, µ) known. Let ζadj = (α,β, ξ, γD, γλ, γµ)
denote the vector of adjoint variables. By change of variables τ = T − t, ∂

∂t = − ∂
∂τ , 0 ≤ τ ≤ T and the

terminal conditions at t = T become initial conditions. If ζnadj = (α,β, ξ, γD, γλ, γµ) is the solution at time
τ = τn, then a simple way to update the solution ζn+1

adj at the next time step τn+1 = τn + ∆t is as follows:
I. Solve the adjoint diffusion equation (A-2) using a fractional step method:

1. Solve ∂α
∂t = A2(α,v) over time ∆t with data (αn,vn), using an explicit upwind scheme, to obtain α∗;

2. Solve ∂α
∂t = ∆(α,D) over time ∆t with data (α∗, Dn+1), using an implicit scheme, to obtain α∗∗;

3. Solve ∂α
∂t = R1(α) +R2(β, c) over time ∆t with data α∗∗ to obtain αn+1. The reaction term R1(α) =

αρ(1− 2c) is treated implicitly in time, while the term containing β is treated explicitly.

II. Solve the adjoint material advection equations (A-5) using an explicit conservative upwind scheme over
time ∆t to obtain (γn+1

D , γn+1
λ , γn+1

µ ).
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III. Solve the velocity adjoint equation (A-4) - algebraic equation in the adjoint unknown ξ - to update
ξn+1.
IV. Solve the adjoint elasticity equation (A-3) with data (ξn+1, λn+1, µn+1) to obtain βn+1.

D. A convergence study against synthetic closed-form solutions.

Consider the simplified case of a homogeneous material: Dw = Dg = D and mw = mg = m.
For the 1D forward problem, let us introduce the following expressions:

can(x, t) =
t

T
+ e−A

2Dtc0(cos(Ax+B) + 1), x ∈ [x1, x2] , t ∈ [0, T ] (D-1)

uan(x, t) =
1
L

(
t

T
)2(x− x1)(x− x2)sin(Ax+B), x ∈ [x1, x2] , t ∈ [0, T ] (D-2)

van(x, t) = 2
1
L

t

T 2
(x− x1)(x− x2)sin(Ax+B), x ∈ [x1, x2] , t ∈ [0, T ], (D-3)

where A = π
x2−x1

and B = − πx1
x2−x1

are constants such that can, uan and van satisfy the prescribed initial
and boundary conditions (16)-(20). L is a length scaling factor, e.g., the length of the space interval and c0 is
a positive constant. We refer to these as ’synthetic closed-form solutions’ for the 1D forward problem. If we
plug these expressions into the 1D version of equation (11) and equation (29), we obtain the corresponding
PDEs for can and uan, similar to the original equations with properly modified source/force terms.

Similarly, for the 1D adjoint problem, we introduce

αan(x, t) = (
e−A

2Dt − e−A
2DT

1− e−A2DT
)α0cos(Ax+B), x ∈ [x1, x2] , t ∈ [0, T ] (D-4)

βan(x, t) = (
t− T

T
)2β0sin

2(Ax+B), x ∈ [x1, x2] , t ∈ [0, T ], (D-5)

ξan = can(x, t)
∂αan
∂x

, x ∈ [x1, x2] , t ∈ [0, T ], (D-6)

where α0 and β0 are corresponding scaling factors. Note that the above expressions for αan and βan do
satisfy both the boundary and terminal conditions at t = T prescribed in the adjoint problem for the adjoint
variables α and β. Also ξan satisfies the prescribed terminal condition at t = T for the adjoint variable ξ.
As before, these are referred to as ’synthetic closed-form solutions’ for the 1D adjoint problem. If we plug
these expressions into the 1D versions of equations (A-2) and (A-3), we obtain the corresponding PDEs for
αan and βan.

We applied the proposed numerical solution procedure for both the forward and the adjoint problems
and compared the errors of the numerical solutions against the synthetic closed-form solutions during mesh
refinement. Results are summarized in tables 6 and 7: no fictitious domain and a fictitious domain approach,
respectively. In both cases, the results shown here correspond to the following choice of parameter values:
x1 = 2, x2 = 8, T = 1;D = 0.0001, ρ = 0.01,m = 1, p1 = 1, p2 = 0.1; c0 = 0.05, L = 6, α0 = 1, β0 = 1. In the
first case, with no fictitious domain, the physical spatial domain [2, 8] is discretized using an uniform mesh,
of size ∆x. The time interval [0, T ] is also discretized uniformly, with time-step ∆t. The corresponding

relative ‖‖∞ errors (‖solan‖rel∞ =
‖solnumeric

an −solan‖∞
‖solan‖∞

) with respect to the synthetic closed-form solutions at

time t = T
2 are shown in table 6. The results verify the first-order convergence rate. In the second case, we

test a fictitious domain approach, where the physical spatial domain [2, 8] is embedded on a larger (fictitious)
domain - here chosen [0, 10]. This whole larger domain is now discretized using an uniform mesh, of size
∆x. A contrast factor ε = (∆x)2 is used between the material properties inside the real domain [2, 8] and
outside, in the fictitious domain [0, 2) ∪ (8, 10]. The time interval [0, T ] is discretized uniformly, as before,
with time-step ∆t. The corresponding relative ‖‖∞ errors with respect to the synthetic closed-form solutions
at time t = T

2 are shown in table 7. Our fictitious domain implementation in this case retains the overall
first-order accuracy, with errors comparable to the implementation without fictitious domain.

20



‖can‖rel∞ ‖uan‖rel∞ ‖αan‖rel∞ ‖βan‖rel∞
∆x = 8/64,∆t = 0.01 0.001148 0.003600 0.005842 0.030570

∆x = 8/128,∆t = 0.005 0.000556 0.001543 0.002995 0.015267
∆x = 8/256,∆t = 0.0025 0.000275 0.000706 0.001516 0.007629

∆x = 8/512,∆t = 0.000625 0.000137 0.000336 0.000763 0.003813

Table 6: Convergence study, no fictitious domain. The relative ‖‖∞ error of the numerical solution with respect to the synthetic

closed-form solution at time t = T
2 shown.

‖can‖rel∞ ‖uan‖rel∞ ‖αan‖rel∞ ‖βan‖rel∞
∆x = 10/64,∆t = 0.01 0.003651 0.003651 0.007040 0.018795

∆x = 10/128,∆t = 0.005 0.000708 0.001818 0.003540 0.009070
∆x = 10/256,∆t = 0.0025 0.000344 0.000951 0.001771 0.005512

∆x = 10/512,∆t = 0.000625 0.000168 0.000407 0.000899 0.002404

Table 7: Convergence study for a fictitious domain approach. The relative ‖‖∞ error of the numerical solution with respect to

the synthetic closed-form solution at time t = T
2 shown.
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Figure 4: Test-case 3: the initial landmark position (top) and the corresponding model-generated target landmarks
(bottom) at final time t = T for (ρ, p1, p2) = (0.05, 1.2, 0.1). Initial landmarks picked to sample different spatial areas
of interest: close to the initial tumor boundary, close to the ’brain’ boundary, and in-between.
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Figure 5: Test-case 3. Top: landmark position; the initial and target landmark position marked with circles. Land-
marks displacement illustrates the nonlinear coupling between tumor growth and subsequent mechanical deformations
(mass-effect) in our model. Bottom: the final (time t = T ) tumor density profile.
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Figure 6: Test-case 4. Top: the initial tumor ’seed’, assumed of the form (32); in this optimization experiment,
c1, c2, c3 (location and size of the seed) are part of the inversion parameter set. Bottom: corresponding spatial tumor
evolution at later times. Close match is retrieved via the adjoint-based optimization.
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Figure 7: Optimization results for test-case 5. Initial target density closely recaptured.
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Figure 8: Illustration of Landmark Registration. Illustration of the landmark place-
ment/registration in two serial scans of a human subject with progressive low grade glioma that are ap-
proximately 2.5 years apart. From left to right: the first column displays two landmarks manually placed
by an expert in the early scan; the second column shows the two landmarks manually tracked by the same
expert in the later scan. Finally, the third column shows the corresponding model-generated landmarks, for
a given choice of the model parameters.
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Figure 9: Real brain tumor images, human subject Left to right: starting scan, T1 MR; target scan,
T1 MR; simulated tumor growth and mass effect via our model: tumor color maps overlaid on the model-
deformed image, with corresponding color bar attached. Reasonable visual agreement observed between the
actual patient target image (second column) and the simulated one (third column, right), guided by only 21
pairs of corresponding landmarks manually placed by a human rater in the early scan and the late (target)
scan, respectively. Note that in this case, the brain was segmented into white matter and ventricles only,
which explains the quasi-uniform tumor growth pattern.
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