
FaIMS: A fast algorithm for the inverse medium problem with
multiple frequencies and multiple sources for the scalar Helmholtz

equation

S. Chaillat G. Biros

Abstract

We consider the inverse medium problem, for the low-frequency time-harmonic wave equation with
broadband and multi-point illumination in the low frequency regime. This model finds many applications
in science and engineering (e.g., seismic imaging, non-destructive evaluation, and optical tomography).

We formulate the problem using a Lippmann-Schwinger formulation, which we discretize using a
quadrature method. We consider small perturbations of the background medium and we invert the Born
approximation. To solve this inverse problem, we use a least squares formulation that is regularized with
the truncated Singular Value Decomposition (SVD).

If Nω is the number of excitation frequencies, Ns the number of incoming waves, Nd the num-
ber of detectors, and N the discretization size of the medium perturbation, a dense singular value
decomposition of the overall input-output map costs [min(NsNωNd, N)]2 × max(NsNωNd, N) op-
erations. We have developed an approximate SVD method that reduces the cost of the factorization
to O(NNωNd + NNωNs) thus, providing orders of magnitude improvements over a black-box dense
SVD. The storage is proportional to the product of N and the rank of the input-output map. If a fast
multipole method is used for the forward scattering problem, the overall work complexity of the inver-
sion scheme can be reduced to O(NNω). We provide numerical results that demonstrate the scalability
of the method.

1 Introduction

We describe a numerical algorithm for the Born approximation formulation of the inverse medium problem
in scalar scattering.[10] Given NsNω incident ("illumination") fields {u(r; s, ω)}Ns,Nω

s=1,ω=1 (where s indexes
the spacial location of the source of the incident field and ω indexes its frequency), we record the scattered
field φ(rd; s, ω) at Nd detector locations {rd}Nd

d=1 and we seek to recover the medium perturbation η(r) by
solving

φ(rd; s, ω) =

∫
H
G(rd, r;ω)η(r)u(r; s, ω) dr (1)

for η.
This is a Lippmann-Schwinger scattering equation, where G(·, ·;ω) is the Green’s function (here, for

a homogeneous background medium) at frequency ω, H is the support of η, and r is a point in H . Upon
discretization using N quadrature points, we have

φ(rd; s, ω) =

N∑
j=1

G(rd, rj ;ω)η(rj)u(rj ; s, ω), (2)

1



where the quadrature weights have been absorbed in η(rj) (and by using "=" we ignore the quadrature
discretization error)1. In the rest of the paper, φwill be generated by point scatterers located at the quadrature
points {rj}Nj=1 with scattering strengths { η(rj) }Nj=1. (The integrand is smooth if the detectors and sources
are not located in H .) The problem is summarized in Figure 1.

x
y

z

detectors

x
y

z

point source

x
y

z

Complex Detectors placed Spherical wave sources
unknown object on arbitrary geometries placed at arbitrary locations

Figure 1: We propose an algorithm for the Born approximation of the inverse medium problem. For simplicity, we
assume that the medium perturbation is represented by a set of point scatterers in a 3-D domain H . The data is
measurements of scattered fields due to several different incident fields. In this paper, the incident fields are generated
by point sources that illuminate that region of interest—possibly at multiple frequencies. (Of course, one can use plane
waves or any other incident field.) Both sources and detectors can be located in arbitrary positions.

Since (2) is linear on η, we can write
Mη = φ.

We want to “invert” it using a truncated SVD algorithm for

min
η
‖Mη − φ‖2.

One approach is to form M and then use a dense SVD factorization [13]. But in our formulation, M is a
dense matrix. A dense SVD is prohibitively expensive2 because its work complexity is
[min(NsNωNd, N)]2 × max(NsNωNd, N). An alternative approach is to use a Krylov iterative method
like the LSQR and Conjugate Gradient (CG) method for the normal equations [9, 24]. To analyze the cost
of such an iterative solver, let us define the cost of the forward scattering solver as kf (N,Nd). Then, the
cost of an iterative method would be NsNωkf (Nd, N) per matvec. The number of iterations will depend on
the scaling and clustering of M . For example, CG would scale with the condition number (after truncation)
of M , and therefore such an approach will be expensive as well. Preconditioned CG or LSQR methods are
typically based on limited-memory BFGS or Lanczos preconditioners [2, 14, 18]. However, constructing
such preconditioners has similar complexity with inverting M [22]. Yet another approach is to use spectral
preconditioning methods [1] or multigrid [6, 3]. The former requires regular geometries. The latter is a
viable alternative, which we will not explore in this paper.

Contributions. Our goal is to design an algorithm that reconstructs η and scales “well” with N , Nω, Ns

and Nd, for the low frequency regime. Our main contribution is the construction of an approximate singular
value decomposition for M based on the following algorithmic components:

1Assuming that sources and detectors are well separated, the Green’s function is C∞, with no singularity. Therefore standard
quadratures can be used.

2For example, if Nω = 10, Ns = 100, Nd = 102, and N = 1003, we will need over one month of computation to compute
the SVD on a single core 2 Gigaflops/sec machine.

2



• a rank-revealing randomized factorization (the algorithm proposed in [20]);

• preprocessing of the incident field u using an SVD to transform the incoming field and data and reduce
the dimension of Ns;3

• and a new recursive SVD that can be used to approximately compute the SVD of M = [M1 M2]
t

given the SVDs of M1 and M2.

Using these components, we construct an approximate SVD factorization for M whose, given the inci-
dent field, the total work complexity is O(Nωkf (N,Nd)Rs, where Rs depends on the problem geometry
and the maximum frequency but is independent of Ns, asymptotically. In our implementation, we use a di-
rect evaluation for the scattered fieldkf (N,Nd) = NNd . Using a fast multipole acceleration the complexity
can be reduced to kf (N,Nd) = N +Nd for the low frequency. We test our algorithm on problems in which
the size of the scatterer varies from 1/10 to five wavelengths. Our algorithm supports arbitrary distributions
of sources, detectors and frequencies.

The main idea goes as follows. First, we reduce the number of incident fields from Ns to Rs us-
ing the randomized SVD. Then, we decompose M into Nω smaller submatrices Mω of size RsNd × N
(1 ≤ ω ≤ Nω). We compute the SVD of each small matrix by using the randomized SVD. We apply a
low rank approximation whenever possible, leading to a compression of the matrix and a speed-up of the
computations. We combine the SVDs of the Mω to approximate the SVD of M using the recursive SVD.
This recursive SVD provides a precise characterization of the inverse problem and allows us to easily apply
the pseudo-inverse of M to the date. We have termed the overall algorithm “FaIMS”. This algorithm can
handle efficiently a large number of sources and frequencies which lead to better resolution (Fig. 2). The
storage complexity of FaIMS is O(N,R), where R is the rank of the approximation. FaIMS can achieve
this cost since it does not require the assembly of M. It only requires matrix-vector multiplications with
submatrices of M.

Limitations. FaIMS, works well when the detectors and the anomaly are well separated and we are in the
low frequency regime, so that the mapping φω = Mωη is low rank and thus, the storage and computational
savings will be significant.

Another limitation is the use of the Born approximation for the reconstruction, which restricts our
scheme to small perturbations of the background medium.

In this paper,We do not consider noise. By accounting for the noise, a more aggressive rank approxi-
mation can be used. In the presence of significant noise, it is unclear on whether FaIMS would be superior
to a preconditioned Conjugate Gradients method for the normal equation. Also, we are considering neither
sparse reconstruction ideas for η [7, 17] nor adaptive reconstruction schemes [4, 15]. We assume that the
location of the detectors is independent of the source location and frequency. Finally, we commit an "inverse
crime", since we use the same forward solver to both generate the data and invert for η.

We assume that we know the Green’s function in analytic form so that the scattered field due to N
scatterers can be evaluated at Nd detectors in O(N + Nd) work and storage using a fast multipole scheme
[8, 28]. However, this is not a fundamental limitation of the algorithm. Any forward-scattering method
with good complexity and accuracy features can be used in FaIMS without changing the behavior of the
algorithm. In higher frequencies, such solvers are harder to construct.

Also, we haven’t pursued randomization in frequencies. The input-output operator depends nonlinearly
on the frequency and randomization techniques for linear operators are not directly applicable.

3This preprocessing step, is valid only in the case in which the detectors are the same for all of the sources.

3



pl
an

e
O

xz
pl

an
e

O
xy

single source and single frequency 12 sources and 8 frequencies

Figure 2: We report the isosurfaces η = 0.25ηmax for the scatterer model of a biplane with size one wavelength.
The incident field for results on the left column is generated with one point sources excited at a single frequency. For
the results of the right columns, we generate the incident field by using12 sources and 8 frequencies. The mesh size is
N = [51]3 and the scattered field is measured at 162 detectors located on a sphere enclosing the biplane. The results
of the inversion with a single source and single frequency already enables to find the object location but the addition
of more sources and frequencies permits to obtain better accuracy.

Related work for problems with multiple sources. Our work has been inspired by the work in [21] and
[25], in which a fast analytic SVD based on Fourier analysis is used for the case in which the sources and
detectors are uniformly distributed on the boundary of a regular geometry (plane, cylinder, or sphere) and
the scatterer is uniformly discretized in the domain of the corresponding regular geometry. The problems
considered in [21] were reconstructions of absorption and diffusion coefficients for optical tomography
problems formulated in the frequency domain. So the mathematical setup is similar to ours. Overall, the
main advantage of FaIMS is that we can consider detectors on arbitrary geometries and point sources at
arbitrary locations, only requires a fast forward scattering solver, and can be used with adaptive schemes.

Let us mention that there is work for forward and inverse problems with multiple sources in the geo-
physics community. However little is related to our work. An exception is the the idea of reducing the
number of sources using linear combinations [19, 23, 17].

Finally, let us comment on randomized SVD-like decompositions for high-order tensors. Such decom-
positions are relevant because the forward operator M can be viewed as a third-order tensor that maps the
sources and the medium perturbation to data. One could explore a randomized tensor decomposition [16],
but we have not pursued this approach in this paper.

4



Outline. In Section 2, we state the problem formulation. In Section 3, we give a summary of the algorithm
FaIMS. In Section 4 we present the SVD algorithms that are required in the overall method. Finally, in
Section 6, we present numerical results for the reconstruction of various point scatterer locations.

Notation. In Table 1, we summarize all the symbols used throughout this article. We use roman letters to
denote continuous scalar fields and operators, bold lower case letters to denote finite dimensional vectors,
and bold upper case ones to denote finite dimensional linear operators.

ω indexes the frequency of the incident field;
λ wavelength λ = 2π/k;
k(r) wavenumber;
k0 background medium wavenumber;
η(r) perturbation of the background medium; k2(r) = k20 + η(r);
G Green’s function of the homogeneous infinite medium characterized by k0;
H support of the anomaly η (typically a cube of L3);
L edge size of H;
N number of points in H;
Nd number of detectors;
Nω number of incident wave frequencies (ω1, . . . , ωNω);
Ns number of spherical wave source locations (point sources);
M overall input-output operator (∈ RNsNωNd×N );
r position in space r = (x, y, z);
rd detector locations;
s indexes the location of the source of the incident field;

Table 1: List of the main symbols used in this Article.

2 Definition of the inversion formula

The time-harmonic scalar wave equation is given by

∇2v(r) + k2(r)v(r) = −s(r), (3)

where s is the source term and k is the wavenumber defined by k2(r) = ω2c−2(r). We consider the
case in which k is defined by k2(r) = k20 + η(r), where k20 = ω2c−20 is the parameter characterizing the
background and η is the unknown perturbation of the background medium. If we denote the total scattered
field v = φ + u, eq. (3) becomes

∇2φ(r) + k20φ(r) = −η(r)(φ(r) + u(r)). (4)

Using the Born approximation, we neglect −η(r)φ(r) and we obtain

∇2φ(r) + k20φ(r) = −η(r)u(r). (5)

We introduce the free-space Green’s function G given by

G(r, r′) =
exp(ik0|r− r′|)

4π|r− r′|
. (6)

5



The solution of eq. (5) can be obtained as a convolution with G [11] and is given by

φ(rd; s, ω) =

∫
H
G(rd, r;ω)η(r)u(r; s, ω)d3r. (7)

Equation (7) is the forward problem, in which given η we can compute φ. In the inverse problem, we seek to
recover the anomaly η (∈ RN ) given φ(rd; s, ω), a set of measurements generated byNsNω known incident
fields and measured at Nd detector locations.

For a given source s, frequency ω and detector d (if the quadrature weights are absorbed in η and we
ignore the discretization error) equation (7) becomes

φω
ds =

N∑
j

Gω
dju

ω
jsηj ,

which we write in a matrix form φ = Mη. To invert for η, we first compute the SVD of M, which we then
use to apply the pseudo-inverse of M on φ. In our experiments the incident field is u(r; s, ω) = G(r; s, ω),
a spherical wave corresponding to a point source.

3 Summary of FaIMS

Before presenting the details of FaIMS (section 5) let us outline the basic steps in the algorithm. Recall that
our goal is to avoid the NsNωNdN complexity of a single matvec.

We introduce a preprocessing step in which use a principal component analysis type compression (PCA)
to reduce the number of incident fields. This step is analogous to source recombination techniques that have
appeared in the literature. In the next two steps, we compute the inputs for the recursive SVD (section 4.2):
the SVD of Mω for a fixed frequency ω. Then we use the recursive SVD to combine the individual SVDs
for each frequency. Overall, FaIMS has four main steps:

Step A: Incident field SVD. We preprocess the incident field uω using the randomized SVD [20] (section 4.1)
to compute a PCA-like reduction of the number of incoming fields uω and data φω and reduce the
number of sources from Ns to Rs.

Step B: Forward problem SVD. For every frequency, we compute the SVD of the Green’s function Gω by
applying the randomized SVD. Each matrix Gω ∈ RNd×N is approximated by a matrix of rank lower
or equal to Rω

g . 4

Step C: Single frequency-multiple sources SVD. Once we have computed the SVDs of the Green’s func-
tions, we can combine them for a fixed frequency using the algorithm presented in section 5. Each
matrix Mω ∈ RRsRω

g×N is approximated by a matrix of rank lower or equal to Rω.

Step D: Overall SVD. Using the results of step C, we apply the recursive SVD (section 4.2) to obtain the SVD
of the complete system matrix M.

4This step seems specific to our forward problem formulation; it is not. If the detectors are well separated from the H , then the
forward operator will be low rank. So a finite element or finite-difference-based forward solver can be used in place of G.

6



Once the SVD of M is computed, we can use it to precondition an iterative method or to apply the
pseudoinverse of M to the data.

In the following section, we present the randomized and recursive algorithms required in the inversion
procedure but not dependent of the inverse problem. The randomized SVD allows fast approximation of
low-rank matrices, using a matrix-vector multiplication. Then the recursive SVD enables to obtain the SVD
of the matrix M = [M1M2]

t given the SVDs of M1 and M2. This algorithm is faster than a standard SVD
when low rank approximations of M1 and M2 are available. In Table 3, we summarize the notation for the
approximate ranks of the operators that appear in FaIMS.

step A B C D
approximate rank Rs Rω

g Rω R

size initial matrix Ns ×N Nd ×N RsR
ω
g ×N NωR

ω ×N

Table 2: Notation for the approximate ranks of operators that appear in the four steps of FaIMS.

4 Randomized and recursive SVDs

4.1 Randomized SVD

The last two decades, there has been a significant amount of work on randomized algorithms for low rank
approximations of matrices. In our work, we use the algorithm proposed in [20]. We briefly summarize
its main steps here for completeness. Let M a matrix of size m × n. Then the randomized SVD method
computes r, Φ, Λ and Ψ, with singular values σ1 ≤ σ2 ≤ . . . ≤ σmin(m,n) such that

‖ΦΛΨ∗ −M‖ ≤ εσ1 ≤ σr+1. (8)

Here σr+1 is the r + 1 singular value of M and ? denotes the conjugate transpose. Φ and Ψ are matrices
of size respectively m × r and n × r, where r are the number of singular values greater than a prescribed
accuracy ε. Λ is the diagonal matrix of size r × r containing the corresponding singular values.

It is shown in [20] that (8) is equivalent to find Q such that

‖MQQ∗ −M‖ ≤ σr+1. (9)

In [20], the authors showed that MQQ∗, where Q is orthonormal, is a good approximation to M if there
exist two matrices G and S such that the product QS is a good approximation to M∗G∗ and there exist
a matrix F such that ‖F‖ is small and FGM is a good approximation to M. In [20], G is chosen to be
a Gaussian random matrix. Using the properties of the SVD, a good approximation QS to M∗G∗ can be
defined. The algorithm is summarized below in Algorithm 1 (we use MATLAB notation). To avoid the need
to precompute the matrix rank, we use an error estimate (Algorithm 1). If the complexity of the matvec is
µ(m,n), then the complexity of the algorithm isO(µ(m,n)`+µ(n,m)r+m`2 +nr2). Assuming m < n,
the complexity is O(µ(m,n)`+ nr2). If we have a dense matrix, the complexity is O(mn`).

It follows that the overall complexity of this approximate factorization isO(`nm) for workO(rm+rn)
for storage.

7



Algorithm 1 Randomized SVD

1: Inputs: M ∈ Rm×n, ε.
2: Outputs: approximate rank r, Φ,Λ,Ψ such that M ≈ ΦΛΨ∗.
3: r = 1
4: ` = r + 20
5: Define G (Gaussian random matrix G ∈ Rn×`)
6: R = MG
7: [Ur,Sr,Vr] = SVD(R)
8: Q(:,1 : r) = Ur(:,1 : r)
9: error estimate = ‖MG−Q?QG‖

10: if error estimate > ε× Sr(1,1) then
11: Increase r (e.g., r = r + 0.05m)
12: Goto 4
13: end if
14: T = M?Q
15: [Φ,Λ,W] = SVD(T?)
16: Ψ = QΦ

4.2 Recursive SVD

Let M be a matrix of size 2m × n and M1 and M2 be two matrices of size m × n. We wish to construct
the SVD of M given

M =

[
M1

M2

]
(10)

and we assume that we know the SVDs of M1 and M2: M1 = Φ1Λ1Ψ
∗
1 and M2 = Φ2Λ2Ψ

∗
2. Let also

r be the rank of M1 and M2 (this need not to be the same, but for simplicity we assume that M1 and M2

have the same rank). We seek for U, V and Σ to be so that M = UΣV?. We show that instead of solving
the initial system of size 2m × n we can solve a smaller equivalent system of size 2r × 2r. To define the
algorithm, we introduce a block decomposition of U and Σ:

U =

[
U1

U2

]
and Σ =

[
Σ1 0
0 Σ2

]
. (11)

Ui is a matrix of size m× r and Σi is a diagonal matrix of size r× r (i = 1, 2). The SVD of the equivalent
system gives U and Σ. Once U and Σ have been reconstructed, we can compute an approximation to V.

Computation of U and Σ. By definition, MM?U = UΣ2. Furthermore, substituting the SVDs of M1

and M2 and (11) into (10), we obtain[
Φ1 0
0 Φ2

] [
Λ2

1 Z1
∗Z2

Z2
∗Z1 Λ2

2

] [
Φ∗1 0
0 Φ∗2

] [
U1

U2

]
=

[
U1

U2

] [
Σ2

1 0
0 Σ2

2

]
(12)

where Zi = ΨiΛi ∈ Rn×r (i = 1, 2). Our key variable change is to introduce ck (k = 1, 2) such that

Uk = Φkck. (13)

8



Then using (13), (12) becomes[
Λ2

1 Z1
∗Z2

Z2
∗Z1 Λ2

2

] [
c1
c2

]
=

[
c1
c2

] [
Σ2

1 0
0 Σ2

2

]
. (14)

Let us define A as

A =

[
Λ2

1 Z1
∗Z2

Z2
∗Z1 Λ2

2

]
, (15)

then the eigenvalues and eigenvectors of A are the vectors ci and the coefficients Σi (i = 1, 2).

Computation of V. Using the SVD of M we have M?U = VΣ, which using (10) and (13) is equivalent
to [

Z1

Z2

] [
c1
c2

]
= VΣ.

Finally, the final expression for V is given by

Vj =
1

Σj

2∑
k=1

Zkck,j , 1 ≤ j ≤ 2r. (16)

where Vj ∈ Rn denotes the jth column of V. If we expect that there exists a good low rank approximation
for A with rank R, we can use the Algorithm 1 to compute the SVD of A. As a result 1 ≤ j ≤ R. If Σj is
very small, the above equation may be unstable. We prefer to compute

ΣjVj =
2∑

k=1

Zkck,j , 1 ≤ j ≤ R. (17)

Notice that ΣjVj are orthogonal but not orthonormal. In Algorithm 2, we summarize the overall recursive
SVD.

Algorithm 2 Recursive SVD
1: Inputs: M1 and M2.
2: Outputs: U,Σ and V such that M = UΣV?.
3: Compute Φk, Λk and Ψk (k = 1, 2) such that Mk = ΦkΛkΨ

∗
k (with r denoting the rank of the Mk).

4: Compute A defined by Ak` = Z?
kZ`, 1 ≤ k, ` ≤ 2.

5: Compute the eigenvalues Σ and eigenvectors c of A.
6: for j = 1 . . . R do

7: Compute ΣjVj =

p∑
`=1

Z`c`,j .

8: end for
9: for ` = 1 . . . 2 do

10: Compute U` = Φ`c`.
11: end for

9



Complexity of the recursive SVD. First, we compute the SVD of the matrices A of size 2r × 2r. The
cost of the SVD is reduced to O(Rr2) if we expect that there exists a good low rank approximation for A
with rank R. The computation of V costs O(Rnr). The computation of U costs O(mrR). Therefore, the
overall complexity of this algorithm is O(Rr(r + n+m)).

The memory requirements for the computation of the pseudo-inverse include storing one matrix U of
size m×R, one matrix V of size n×R and one vector Σ of size R. As a result, the memory requirements
for the computation of the pseudo-inverse is O(R(m+ n)).

Accuracy of the recursive SVD. Here we quantify the error introduced by this recursive SVD on the
singular values. In Lemma 4.1 we show that this error can be bounded. We were not able to proof a similar
stability for the singular values [26, 27].

Lemma 4.1 Let M1 and M2 ∈ Rm×n be two matrices whose rank is equal to r+1. Assume that the r+1th
singular values of M1 and M2 denoted λ1r+1 and λ2r+1 are equal to ε. We denote Mε the approximation of
M obtained by applying the recursive SVD presented in Algorithm 2. If we use the r + 1 non-zero singular
values of M1 and M2, then M = Mε. On the other hand, if use only the r first singular values of M1 and
M2, the error introduced on the singular values λk of Mε is bounded by

|λk(M)− λk(Mε)| ≤ 2ε
[
2 max(λ11, λ

2
1) + ε

]
, 1 ≤ k ≤ 2m ≤ n.

Proof: We write M1 = Φ1Λ1(Ψ1)
∗+εΦε

1(Ψ
ε
1)
∗ and M2 = Φ2Λ2(Ψ2)

∗+εΦε
2(Ψ

ε
2)
∗, i.e. we separate

M1 and M2 into two submatrices. It is immediate that

MM∗ = ΦBB∗Φ∗ + εΦBΨε(Φε)∗ + εΦε(Ψε)∗B∗Φ∗ + ε2Φε(Ψε)∗Ψε(Φε)∗ (18)

where

Λ =

[
Λ1 0
0 Λ2

]
,Φ =

[
Φ1 0
0 Φ2

]
and Φε =

[
Φε

1 0
0 Φε

2

]
,

Ψ =
[

Ψ1 Ψ2

]
,Ψε =

[
Ψε

1 Ψε
2

]
and B = ΛΨ∗.

Using that Φ∗U = c, MM∗U = UΣ2 is equivalent to

BB∗c + εBΨεc + ε(Ψε)∗B∗c + ε2(Ψε)∗Ψεc = cΣ2.

Finally using (15), we obtain that Φ∗U = c, MM∗U = UΣ2 is equivalent to

(A + E)c = cΣ2 where E is given by E = εBΨε + ε(Ψε)∗B∗ + ε2(Ψε)∗Ψε.

From Theorem 8.6.2 in [13] we know that the error between the singular values of A + E and the ones of
A is bounded, i.e.

|λk(A + E)− λk(A)| ≤ ‖E‖2, k = 1 : 2m.

We have

‖E‖2 ≤ 2ε‖B‖2‖Ψε‖2 + ε2‖Ψε‖22 ≤ 2εmax(λ11, λ
1
2)‖Ψ‖2‖Ψε‖2 + ε2‖Ψε‖22.

Since Ψ1,Ψ2 and Ψε
1,Ψ

ε
2 are orthonormal matrices, ‖Ψ‖2 ≤ ‖Ψ1‖2+‖Ψ2‖2, and ‖Ψ‖ε2 ≤ ‖Ψ1‖ε2+‖Ψ2‖ε2,

it follows that
|λk(A + E)− λk(A)| ≤ 2ε

[
2 max(λ11, λ

2
1) + ε

]
.

10



5 FaIMS

In this section, we present the complete algorithm for the reconstruction of η. We recall that, for a fixed
frequency ω, the forward problem is given by

φω
ds =

N∑
j=1

Gω
djηju

ω
js, d = 1, . . . , Nd, s = 1, . . . , Ns, (19)

where φω
ds is the set of measurement at the detector locations. We write (19) under a matrix form as φω

s =
Mω

s η where Mω
s = Gωuω

s . The overall algorithm can be stated as follows:

Step A: For each frequency, reduce the number of incident fields.

Step B: For each frequency, compute the SVD of Gω using Algorithm 1.

Step C: Combine the SVDs of all sources for a fixed frequency using Algorithm 2.

Step D: Combine the SVDs of all frequencies using several steps of Algorithm 3.

Step E: Apply the pseudo-inverse of M to recover η.

Inputs. We specify the domain (unit cube) size L defined in wavelengths λ units (H is the domain [0;L]3),
the source locations, the detector locations, the number of points N that will be used to discretize H , and
the incident wave frequencies ω1,...,Nω .

Step A: Reducing the number of incident fields. This is a preprocessing stage that requires the evaluation
of φ(r) at the scatterer positions. The reduction is done for each frequency ω. If we introduce the SVD
of uω = ΦωΛωΨω∗ (where uω = [uω

1 . . .u
ω
Ns

]t ∈ RNs×N ) and use the orthonormality of the Ψω, (19)
becomes

φωΨω
` ≈ Gω diag (Φω

` Λω
` )η , 1 ≤ ` ≤ Rs and 1 ≤ ω ≤ Nω. (20)

where Φω
` denotes the `-th column of the matrix Φω ∈ RN×Rs and Ψω

` denotes the `-th column of the
matrix Ψω ∈ RNs×Rs . That is, we have replaced diag (uω

s ) ∈ RN×N with Dω
` = diag (Φω

` Λω
` ) ∈ RN×N ;

and we have transformed the data accordingly: φω
s is replaced by dω

` = φωΨω
` . If a low rank approximation

is available for φ, Rs will be independent of Ns.5

Step B: Computation of the randomized SVD of Gω. For each frequency ω, we compute the SVD of
the matrix Gω = Φω

g Λω
g Ψω∗

g ∈ RNd×N using the randomized SVD (section 4.1). We denote Rω
g the rank

of the low rank approximation of Gω. Rω
g depends on the approximation tolerance for the SVD and satisfies

Rω
g ≤ Nd, N .

5A similar approach could be followed for φds to guide numerical rank selection in the building of the SVD of M.

11



Step C: Combine the SVDs of all sources for a fixed frequency. To combine the SVDs of the Rs

sources for a fixed frequency, we compute the SVD of GωDω
1

...
GωDω

Rs

 ∈ RRsNd×N , (21)

where Gω ∈ RNd×N and Dω
` = diag(Φω

` Λω
` ) ∈ RN×N . Instead of computing directly the SVD of this large

matrix, we use the SVD of Gω computed during step B; Gω = Φω
g Λω

g Ψω∗
g . More precisely, we compute

the SVD of

Bω =

 Λω
g Ψω∗

g Dω
1

...
Λω

g Ψω∗
g Dω

Rs

 ∈ RRsRω
g×N

We compute the SVD of Bω with the randomized SVD. Rω denotes its approximate rank. Finally, we
transform the data accordingly, i.e. we replace dω

1
...

dω
Rs

 ∈ RRsNd by

 Φω∗
g dω

1
...

Φω∗
g dω

Rs

 ∈ RRsRω
g . (22)

Step D: Recursion over frequencies. Finally we need to combine the Nω SVDs of Mω (corresponding
to Nω frequencies) computing in step C. We apply the recursive SVD (section 4.2). R denotes the number
of selected singular values (smaller than a prescribed tolerance). We define T, W and S such that M =
TSW?. T and W are two matrices of size NωRsR

ω
g × R and N × R respectively. S is a diagonal matrix

of size R. Instead of applying directly the recursive SVD to combine Nω frequencies, we apply recursively
this algorithm to combine two frequencies at each level of the recursion tree (see Fig. 3).

Mω1Mω2 Mω4 Mω5 Mω6 Mω7Mω8

level 3

level 2

M = USV∗

Mω3

level 1

Figure 3: Instead of applying directly the recursive SVD (section 4.2)on Nω frequencies, we apply the algorithm
recursively to combine two frequencies at each level of the recursion tree (this example is given for the case Nω = 8).

Overall complexity estimate for work and storage.

• Step A: The cost of reducing the number of incident fields is the cost for the construction of the low
rank SVDs for matrices of size Ns × N for each frequency ω. The cost of a single frequency is
O(RsNsN) and the overall cost is O(RsNsNωN) (where Rs ≤ min(Ns, N)).

• Step B: The cost of the computation of the randomized SVD of Gω ∈ RNd×N for a fixed frequency
is O(Rω

gNdN) so that the total cost of this step is O(Rω
gNωNdN) (where Rω

g ≤ min(N,Nd)).

12



• Step C: The cost of combining the sources is reduced to the cost of the computation of the randomized
SVD of Bω ∈ RRsRω

g×N : O(RωRsR
ω
gN) for each frequency (with Rω ≤ RsR

ω
g , N ). So that the

total cost of this step is O(RωRsNωR
ω
gN).

• Step D: At a fixed level `, we want to combine two matrices of size 2`−1RsR
ω
g × N . The cost of

this recursion is thus O(R`R`−1(R`−1 + N + 2`Rω)gRs). R` denotes the rank of the approximate
matrix at a fixed level `. As a result, we know that R` ≤ 2`−1RωRs (size of the matrix at a fixed level
`). So the cost to combine two frequencies at a fixed level ` is O(R`R`−1(N + 2`RωRs)). At each
level `, we have to compute Nω2−` of those recursive SVDs. The total cost at a given level is finally
O(NωR`R`−1(2

−`N + Rω
gRs)). The complete algorithm requires log2(Nω) levels so that the total

cost is

log2(Nω)∑
`=1

NωR`R`−1(2
−`N +Rω

gRs)

= log2(Nω)NωR
2(Rω

gRs +N

log2(Nω)∑
`=1

2−`), (23)

where we assume thatR` ≤ R for 1 ≤ ` ≤ log2(Nω). Finally the cost of step D isO(log2(Nω)NωR
2(Rω

gRs+
N)).

The overall complexity of FaIMS is

O(RsNsNωN +Rω
gNωNdN +RωRsNωR

ω
gN + log2(Nω)NωR

2N).

At each of the four steps of FaIMS, we perform a low rank approximation of the system matrix. Because this
matrix is defined by the values of a function on a given discretization, its rank is constant even though we use
a coarser discretization. As a result for large enough numbers of sources, detectors, excitation frequencies
and/or discretization of H , the values of Rs, Rω

g , Rω and R are constant. As a result the final complexity
estimate becomes

O(NsNωN +NωNdN).

As we have mentioned, if a fast summation method (or a fast forward solver) is available, this complexity
reduces to

O(Nω(Ns +N +Nd)).

Storage. For the step A the storage of the Nω singular vectors is order NωRs(N +Ns). For the step B,
the storage of the Nω singular vectors is order NωR

ω
g (N + Nd) and order NωRω(RsR

ω
g + N) for the step

C. Finally the cost of the step D in terms of memory is O(log2(Nω)Rω
gRsR+NωNR). The storage of the

singular vector of the SVD of the complete system matrix is O(NωR
ω
gRsR+RN).

6 Numerical experiments

We present several configurations to illustrate the main advantages of the algorithm: the capability of plac-
ing detectors and sources on arbitrary geometries and its overall scalability. We verify the accuracy of the
algorithm using two scatterer geometries: a cross-like planar geometry of point scatterers and a biplane-like

13



3D geometry of point scatterers. We generate the scattered field using single forward problem approxima-
tions (Born Approximation). In each example, the wave velocity of the background medium is set to one.
We are focused on demonstrating the scalability aspects of our algorithm, so we do not consider noise or
regularization. The algorithm has been implemented in Matlab and our experiments took place on a AMD
Opteron workstation. We have shown that the accuracy of the recursive SVD depends on the accuracy of
the SVDs in input. However, because of the ill-posedness of the problem and to obtain a fast algorithm, we
must truncate the smallest singular values. The tolerance ε in the randomized SVD algorithm has been set to
10−9 in all of our experiments. The truncation parameter (regularization) we used to invert the approximate
factorization of M, was 10−8σ1.

6.1 Description of the test problems

Definition of the main parameters used in our tests.

• The Nω incoming field frequencies are equispaced in the [ωmin, ωmax] interval.

• Length scales are measured in terms of the smallest wavelength λ := 2π/ωmax. (The higher the
frequency, the lower the compression of the operators and thus, the higher the computational cost of
the inversion.)

• In all of our experiments, we have chosen a cubic domain for the scatterer discretization domain
H := [0, L]3 and have selected L = 12λ. We have used a regular grid to discretize H . 6

Specification of the target medium perturbations and parameters for the different numerical experi-
ments.

• Cross-like geometry. We consider two test problems based on a simple cross-like geometry located
at the z = 6λ plane.

– For the Cross A (Fig. 4A), the detectors are regularly spaced on the plane z = L and the sources
on the plane z = 0.

– For the Cross B, the detectors and sources are located on arbitrary geometries (Fig. 4B).

We verify the accuracy of our SVD reconstruction on the Cross A scatterer model with size λ. We
use four sources with multiple excitation frequencies to generate the incident fields and measure the
scattered fields at [21]2 detectors. The computational domain is discretized with a linear grid with
size [21]2. Also on these two test problems, we verify the scalability of the algorithm with increasing
N , Nd, Ns and Nω and demonstrate the effectiveness of a low rank approximation. See Table 3 for a
summary of the problem and scatterer model sizes used in this set of experiments.

• Biplane geometry. We consider a test problem with a more complex geometry. The sources and
detectors are located on a sphere (Fig. 4D). We consider two scatterer model sizes: λ and 5λ. We use
162 detectors, 12 sources, 8 frequencies and we set N = 513.

6As mentioned in the introduction, more sophisticated adaptive schemes can be employed, but here for simplicity we only
consider regular grid discretizations.

14



N ωmin ωmax Nω Ns Nd scatterer size (λ)
112 50 100 8 16 102 0.01 and 1
212 50 100 16 64 202 0.01 and 1
412 50 100 32 256 402 0.01 and 1
812 50 100 64 1024 802 0.01 and 1

Table 3: Cross-like geometry: Summary of the parameters used to verify the scalability of FaIMS. In the following,
we will refer to one of those four tests by the mesh size, i.e., N = 112, N = 212, N = 412 or N = 812.

detectors

12 λ
x

y

z

6 λ

point sources

12 λ
x

y

z

6 λ

detectors and 
point sources

Cross A Cross B

12 λ
x

y

z

detectors and 
point sources

Target biplane geometry Biplane

Figure 4: Definition of the three test problems we have used to test FaIMS. We use two geometries of point scatterers :
a cross (A and B) and a biplane. For the cross A, we generate the incident field by sources and detectors regularly
spaced on the planes z = 0 and z = 12λ respectively. For the Cross B test problem, the detectors and point sources
are located on two arbitrary geometries. For the biplane-like geometry, the sources and detectors are located on a
sphere. The triangulation of the biplane geometry is used for visualization only. To generate the data, we compute the
scattered field due to point scatterers located at the vertices of the mesh.

6.2 Results

Cross A. We first verify the accuracy of our SVD reconstruction. In Table 4, we report the relative error
on the approximation normalized by the value of the maximum singular value. We also compute the relative
error between FaIMS and the SVD MATLAB function on the singular values (normalized by the value of the
maximum singular value). Finally, we report the relative error between FaIMS and the SVD Matlab function

15



on the approximation of the inverse.

Nω = 4 Nω = 8 Nω = 16 Nω = 32

‖M−UΣV∗‖/σmax 3.07 10−6 2.34 10−6 2.10 10−6 2.01 10−6

‖Σ−Σmatlab‖/σmax 1.00 10−7 3.12 10−7 1.73 10−7 1.90 10−7

‖η − ηmatlab‖/ηmatlab 1.72 10−2 2.29 10−2 1.19 10−2 2.95 10−2

Table 4: We report the relative error on the approximation normalized by the value of the maximum singular value.
We also compute the relative error between FaIMS and the SVD Matlab function on the singular values (normalized by
the value of the maximum singular value). Finally, we report the relative error between FaIMS and the SVD MATLAB
function on the approximation of the inverse. The scatterer model is the Cross A with size λ. We use four sources with
multiple excitation frequencies to generate the incident fields and measure the scattered fields at [21]2 detectors. The
computational domain is discretized using a Cartesian grid of size [21]2.

To verify the efficiency and accuracy of our algorithm, we solve the inverse problem both using our
FaIMS algorithm and the LSQR MATLAB function. The termination tolerance in the LSQR algorithm is
set to 10−5. On Fig. 5, we report η the results of the inversion for various mesh sizes and for the scatterer
model of the cross geometry with size λ. The left column plots represent the results of FaIMS and the right
column plots the results with the LSQR. The mesh sizes handled using the LSQR function are limited due to
memory constraints.7 Both methods lead to a good accuracy of the reconstruction. In both cases, the larger
the problem is, the better the reconstruction. The accuracy of FaIMS is slightly better. The reason is that we
terminated LSQR early. .

In Figure 6, we report the CPU time for the four main steps of FaIMS: the reduction of the number of
incident fields, the computation of the SVDs of the Green’s functions, the combining of the SVDs for all
sources for a fixed frequency and the combining of the SVDs for all frequencies, for the two scatterer model
sizes (0.01λ and λ). We normalize the CPU time by the total CPU time required to generate the incident
field (which is linear in Nd, Nω, Ns and N ). We note that the smaller the cross size is, the smaller the CPU
time. This is due to the effectiveness of the low-rank approximation. For the scatterer model with size λ, the
major CPU cost is the combining of the SVDs for all sources whereas, as expected, this step takes a small
portion of time for the scatterer model with size 0.01λ. Again, as we increase N the normalized CPU time
of each step reduces. This result is in agreement with our complexity estimate.

In Table 5, we report the normalized total CPU time of the inversion both with FaIMS and with the LSQR
MATLAB function. Again the scatterer model is the Cross A with size 0.01λ and λ. For the LSQR solver,
the total inversion time is independent of the scatterer model size whereas FaIMS benefits from low rank
approximations at the low frequency regime. FaIMS is clearly faster than the LSQR MATLAB function.
In Figure 7, we illustrate the level of compression according to the scatterer model and problem sizes. For
each major step of the algorithm, we report the compression rates against the frequency or the level in the
tree for the combining of the SVDs for all frequencies. The ranks are normalized by the full rank. Because
the inverse problem is ill-posed, the singular values decay very fast. We use a truncated SVD to regularize
the formulation.

7We could also use a simple matrix free approximation. In that case, the limitation is the maximum number of iterations allowed.

16



N
=

[1
1]

2

(A) (B)

N
=

[2
1]

2

(C) (D)

N
=

[8
1]

2

CANNOT BE SOLVED

(E)

FaIMS LSQR Matlab function

Figure 5: Cross A : We report η, the result of the inversion, at the z = 6 λ plane for the scatterer model cross A with
size λ. The left column represents the results using FaIMS (A,C,E) and the right column the results using the LSQR
MATLAB function with tolerance set to 10−5 (B,D). The red points represent the true point scatterer locations. The
two methods produce very similar results. 17



0 1000 2000 3000 4000 5000 6000 7000
N

10-2

10-1

Ti
m

e 
/ F

or
w

ar
d 

tim
e

0.01  !
 !

0 1000 2000 3000 4000 5000 6000 7000
N

10-2

10-1

100

Ti
m

e 
/ F

or
w

ar
d 

tim
e

0.01 !
!

A: Reducing the number of sources B: SVDs of the Green’s functions

0 1000 2000 3000 4000 5000 6000 7000
N

10-3

10-2

10-1

100

101

Ti
m

e 
/ F

or
w

ar
d 

tim
e

0.01 !
!

0 1000 2000 3000 4000 5000 6000 7000
N

10-4

10-3

10-2

10-1

100

Ti
m

e 
/ F

or
w

ar
d 

tim
e

0.01 !
!

C: Combining the SVDs for all sources D: Combining the SVDs for all frequencies

Figure 6: We report the normalized (by the time to “solve” (evaluate in our case) the forward problem) CPU time
for each of the main steps of FaIMS against the mesh size. The scatterer model is the Cross A with size 0.01λ (plain
lines) and λ (dashed lines). The smaller is the cross size, the smaller is the normalized CPU time for each step. This
is due to the possibility of low rank approximations at the low frequency regime. For the scatterer model with size λ,
the major CPU consuming step is the combining of the SVDs for all sources whereas, as expected, this step consumes
only a small portion of time for the scatterer model with size 0.01λ.

18



N = [11]2 N = [21]2 N = [41]2 N = [81]2

0.01λ
FaIMS 1.03 0.23 0.14 0.13

LSQR 11.6 (1) 413.6 (1) X X

λ
FaIMS 15.0 24.7 9.3 10.2

LSQR 13.1 (14) 407.7 (11) X X

Table 5: We report the normalized (by the time to solve the forward problem) CPU time against the mesh size using
FaIMS and using the LSQR MATLAB function. For the LSQR we also report the number of iterations (number in
parentheses).

50 60 70 80 90 100
Frequency

10-3

10-2

10-1

100

Ra
nk

 / 
Fu

ll 
ra

nk

N=[11]2

N=[11]2

N=[21]2

N=[41]2

N=[81]2
N=[21]2

N=[41]2

N=[81]2

0.01! !

50 60 70 80 90 100
Frequency

10-4

10-3

10-2

10-1

100

Ra
nk

 / 
Fu

ll 
ra

nk

N=[11]2

N=[21]2

N=[41]2

N=[81]2

N=[81]2

N=[41]2

N=[21]2

N=[11]2

0.01! !

A: Reducing the number of sources B: SVDs of the Green’s functions

50 60 70 80 90 100
Frequency

10-2

10-1

100

Ra
nk

 / 
Fu

ll 
ra

nk

N=[11]2

N=[21]2

N=[41]2

N=[81]2

N=[81]2N=[41]2N=[21]2
N=[11]2

0.01! !

0 1 2 3 4 5 6
Level in tree

10-2

10-1

100

Ra
nk

 / 
Fu

ll 
ra

nk

N=[11]2

N=[21]2

N=[41]2

N=[81]2

N=[81]2

N=[41]2

N=[21]2

N=[11]2

0.01! !

C: Combining the SVDs for all sources
C: Combining the SVDs for all frequen-
cies

Figure 7: Cross A : For each major step of the algorithm, we report the compression rates against the frequency or
the level in the tree. The ranks are normalized by the full rank. The scatterer model is the Cross A with size 0.01λ
(plain lines) and λ (dashed lines). We report the results for the four mesh sizes (red: N = 812, black: N = 412, blue:
N = 212 and green: N = 112). Because the useful information is limited, the rank is not dependent of the mesh size.
As a result, the larger the mesh is, the larger the compression. Moreover, the larger the scatterer model is, the smaller
the compression. Finally, we remark that at each step, the algorithm keeps compressing the information.

Cross B. For this second example, the sources and detectors are located on arbitrary geometries. We
report the results of the inversion η for the case of N = 812 on Fig. 8 (left: scatterer model with size 0.01λ;

19



right: scatterer model with size λ). This example illustrates the ill-posedness of the problem. For the lowest
frequency, only a small number of singular values are selected such that the algorithm is very fast. Of course,
for this case the reconstruction is not so accurate. We get better reconstructions with increasing frequency.
In Figure 9, we report the CPU time for the four main steps of FaIMS: the reduction of the number of

Figure 8: We report η at the z = 6 λ plane. The scatterer model is the Cross B with size 0.01λ (left) and λ (right). The
6561 detectors are located on the geometry presented on Fig. 4B. We generate the data using incident fields generated
by 1024 sources on the geometry presented on Fig. 4B and 64 frequencies.

incident fields, the computation of the SVDs of the Green’s functions, the combining of the SVDs for all
sources for a fixed frequency and the combining of the SVDs for all frequencies, for the two scatterer model
sizes (0.01λ and λ). We normalize the CPU time by the total CPU time to generate the incident field (which
is linear in Nd, Nω, Ns and N ). The smaller the cross size is, the smaller the CPU time since low-rank
approximations are effective. For the scatterer model with size λ, the major CPU consuming step is the
combining of the SVDs for all sources whereas, as expected, this step consumes only a small portion of time
for the scatterer model with size 0.01λ. In Table 6, we report the normalized total CPU time of the inversion
both with FaIMS and with the LSQR function. Again the scatterer model is the Cross B with size 0.01λ and
λ. For the LSQR solver, the total inversion time is independent of the scatterer model size whereas FaIMS
benefits from low rank approximations at the low frequency regime. FaIMS is clearly faster than the LSQR
Matlab function and than the forward solver at low frequencies.

In Figure 10, we report the level of compression according to the scatterer model and problem sizes.

Biplane. This last example demonstrates the ability of the algorithm to recover complex geometries. The
scatterer model is a biplane-like geometry with size λ or 5λ. On Figures 11 (size λ) and 12 (size 5λ), we
report the results of the inversion η under a tabular form. Each row corresponds to a particular point of view
(plane Oxy, Oxz or Oyz). The left column corresponds to a 3-D view of the isosurfaces (η = 0.25 ∗ ηmax)
and the right column corresponds to a 2-D slice at the median plane. For the scatterer model with size λ, the
inversion is as accurate. We can already distinguish the main components of the biplane. For example, on
the Oxz view, we can separate the two floats of the plane. However, we cannot see the two wings or say that
the shape is a biplane. Again, this is due to the ill-posedness of the problem at low frequencies. On the other
hand, for the scatterer model with size 5λ, the system matrix is nearly full rank. As a result, the inversion
is more accurate. We can clearly see the two wings, the two floats and the fin of the biplane. Again, as
expected, the higher the frequency is, the more accurate the reconstruction.

20



0 1000 2000 3000 4000 5000 6000 7000
N

10-2

10-1

Ti
m

e 
/ F

or
w

ar
d 

tim
e

0.01  !
 !

0 1000 2000 3000 4000 5000 6000 7000
N

10-2

10-1

100

Ti
m

e 
/ F

or
w

ar
d 

tim
e

0.01 !
!

A: Reducing the number of sources B: SVDs of the Green’s functions

0 1000 2000 3000 4000 5000 6000 7000
N

10-3

10-2

10-1

100

101

Ti
m

e 
/ F

or
w

ar
d 

tim
e

0.01  !
 !

0 1000 2000 3000 4000 5000 6000 7000
N

10-4

10-3

10-2

10-1

100

Ti
m

e 
/ F

or
w

ar
d 

tim
e

0.01  !
 !

C: Combining the SVDs for all sources D: Combining the SVDs for all frequencies

Figure 9: We report the normalized (by the time to solve the given forward problem) CPU time for each main step of
our inversion algorithm against the mesh size. The scatterer model is the Cross B with size 0.01λ (plain lines) and λ
(dashed lines).

21



50 60 70 80 90 100
Frequency

10-3

10-2

10-1

100

Ra
nk

 / 
Fu

ll 
ra

nk

N=[11]2

N=[21]2

N=[41]2

N=[81]2

N=[81]2

N=[41]2

N=[21]2

N=[11]2

0.01! !

50 60 70 80 90 100
Frequency

10-4

10-3

10-2

10-1

100

Ra
nk

 / 
Fu

ll 
ra

nk

N=[11]2

N=[21]2

N=[41]2

N=[81]2

N=[81]2

N=[41]2

N=[21]2

N=[11]2

0.01! !

Step A: Reducing the number of sources Step B: SVDs of the Green’s functions

50 60 70 80 90 100
Frequency

10-2

10-1

100

Ra
nk

 / 
Fu

ll 
ra

nk

N=[11]2

N=[21]2

N=[41]2

N=[81]2

N=[81]2N=[41]2N=[21]2N=[11]2

0.01! !

0 1 2 3 4 5 6
Level in tree

10-3

10-2

10-1

100

Ra
nk

 / 
Fu

ll 
ra

nk

N=[11]2

N=[21]2

N=[41]2

N=[81]2

N=[81]2

N=[41]2
N=[21]2N=[11]2

0.01! !

Step C: Combining the SVDs for all
sources

Figure 10: Cross B : For each major step of the algorithm, we report the compression rates against the frequency.
The ranks are normalized by the full rank. The scatterer model is the Cross B with size 0.01λ (plain lines) and λ
(dashed lines). We report the results for the four mesh sizes (red: N = 812, black: N = 412, blue: N = 212 and
green: N = 112).

22



pl
an

e
O

xy
pl

an
e

O
xz

pl
an

e
O

yz

3-D view 2-D slice

Figure 11: Results of the inversion for the scatterer model of the biplane with size λ. Each row corresponds to
a particular point of view (plane Oxy, Oxz or Oyz). The left column corresponds to a 3-D view of the isosurfaces
(η = 0.25 ∗ ηmax) and the right column corresponds to a 2-D slice, respectively from top to bottom at the planes
z = 0, y = 0 and x = 0.

23



pl
an

e
O

xy
pl

an
e

O
xz

pl
an

e
O

yz

3-D view 2-D slice

Figure 12: Results of the inversion for the scatterer model of the biplane with size 5λ. Each row corresponds to
a particular point of view (plane Oxy, Oxz or Oyz). The left column corresponds to a 3-D view of the isosurfaces
(η = 0.25 ∗ ηmax) and the right column corresponds to a 2-D slice, respectively from top to bottom at the planes
z = 0, y = 0 and x = 0.

24



N = [11]2 N = [21]2 N = [41]2 N = [81]2

0.01λ
FaIMS 4.14 0.35 0.21 0.25

LSQR 6.4 (1) 295.6 (2) X X

λ
FaIMS 18.2 44.5 12.4 14.5

LSQR 9.5 (49) 309.8 (71) X X

Table 6: We report the normalized (by the time to solve the forward problem) CPU time against the mesh size using
FaIMS and using the LSQR Matlab function. For the LSQR Matlab function we also report the number of iterations
(number in parentheses).

7 Conclusions

In this paper, we have presented FaIMS, a method for the inverse medium problem for the time-harmonic
scalar wave equation. FaIMS uses a randomized SVD algorithm to compute SVDs of small submatrices
and then applies a recursive SVD algorithm to reconstruct the overall factorization. Its complexity estimate
is orders-of-magnitude smaller than the standard SVD factorization. The method is matrix-free, it only
requires matrix-vector multiplication for the forward and adjoint problems. In our experiments, FaIMS
outperformed the LSQR Krylov iterative method. We showed that the factorization error in the singular
values is bounded by the smallest largest singular value that we truncate in the rank approximation. The
numerical efficiency and accuracy of the method is demonstrated in several numerical experiments in the
low frequency (0-10 wavelengths) regime for the case of point scatterers. FaIMS can handle detectors and
sources located on arbitrary geometries. In future work, we intend using our approximate SVD factorization
as a preconditioner with a Newton-Krylov-Multigrid iterative method for full nonlinear inversion method
(for example, for problems in which G is not analytically available [5]). Also, we ongoing work includes
adaptive algorithms and parallelization of the method. For higher frequencies, ideas discussed in [12] can
be explored to construct directional low-rank approximations.

References

[1] S. S. ADAVANI AND G. BIROS, Fast algorithms for source identification problems with parabolic
PDE constraints, SIAM Journal on Imaging Sciences, (2010). in press.

[2] V. AKCELIK, G. BIROS, AND O. GHATTAS, Parallel multiscale Gauss-Newton-Krylov methods for
inverse wave propagation, in Proceedings of the IEEE/ACM SC2002 Conference, The SCxy Confer-
ence series, Baltimore, Maryland, November 2002, ACM/IEEE.

[3] U. ASCHER AND E. HABER, A multigrid method for distributed parameter estimation problems,
ETNA, 15 (2003).

[4] W. BANGERTH, A framework for the adaptive finite element solution of large-scale inverse problems,
SIAM Journal on Scientific Computing, 30 (2008), pp. 2965–2989.

[5] G. BIROS AND G. DOǦAN, A multilevel algorithm for inverse problems with elliptic PDE constraints,
Inverse Problems, 24 (2008), pp. 1–19.

25



[6] A. BORZÍ, High-order discretization and multigrid solution of elliptic nonlinear constrained optimal
control problems, Journal Of Computational And Applied Mathematics, 200 (2007), pp. 67–85.

[7] E. CANDÈS AND J. ROMBERG, Sparsity and incoherence in compressive sampling, Inverse Problems,
23 (2007), pp. 969–985.

[8] H. CHENG, L. GREENGARD, AND V. ROKHLIN, A fast adaptive multipole algorithm in three dimen-
sions, Journal of Computational Physics, 155 (1999), pp. 468–498.

[9] J. CHUNG, J. NAGY, AND D. O’LEARY, A Weighted-GCV Method for Lanczos-Hybrid Regulariza-
tion, Electronic Transactions on Numerical Analysis, 28 (2008), pp. 149–167.

[10] D. COLTON AND R. KRESS, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd Edition,
Applied Mathematical Sciences, Springer, 1998.

[11] R. COURANT AND D. HILBERT, Methods of Mathematical Physics, vol. II, Interscience Publishers,
1961.

[12] B. ENGQUIST AND L. YING, Fast directional multilevel algorithms for oscillatory kernels, SIAM
Journal on Scientific Computing, 29 (2008), pp. 1710–1737.

[13] G. H. GOLUB AND C. H. V. LOAN, Matrix Computations, Johns Hopkins, third ed., 1996.

[14] E. HABER AND U. ASCHER, Preconditioned all-at-one methods for large, sparse parameter estima-
tion problems, Inverse Problems, 17 (2001), pp. 1847–1864.

[15] E. HABER, S. HELDMANN, AND U. ASCHER, Adaptive finite volume method for distributed non-
smooth parameter identification, Inverse Problems, 23 (2007), pp. 1659–1676.

[16] N. HALKO, P. MARTINSSON, AND J. TROPP, Finding structure with randomness: Stochastic algo-
rithms for constructing approximate matrix decompositions, arXiv, 909 (2009).

[17] F. HERRMANN, Y. ERLANGGA, AND T. LIN, Compressive simultaneous full-waveform simulation,
Geophysics, 74 (2009), p. A35.

[18] T. HOHAGE, On the numerical solution of a three-dimensional inverse medium scattering problem,
Inverse Problems, 17 (2001), p. 1743.

[19] J. KREBS, J. ANDERSON, D. HINKLEY, R. NEELAMANI, S. LEE, A. BAUMSTEIN, AND M. LA-
CASSE, Fast full-wavefield seismic inversion using encoded sources, (2009).

[20] E. LIBERTY, F. WOOLFE, P. MARTINSSON, V. ROKHLIN, AND M. TYGERT, Randomized algorithms
for the low-rank approximation of matrices, Proceedings of the National Academy of Sciences, 104
(2007), p. 20167.

[21] V. A. MARKEL, V. MITAL, AND J. C. SCHOTLAND, Inverse problem in optical diffusion tomography.
iii. inversion formulas and singular-value decomposition, Journal of the Optical Society of America
A, 20 (2003), pp. 890–902.

[22] J. L. MORALES AND J. NOCEDAL, Automatic preconditioning by limited memory quasi-Newton up-
dating, SIAM Journal on Optimization, 10 (2000), pp. 1079–1096.

26



[23] R. NEELAMANI, C. KROHN, J. KREBS, M. DEFFENBAUGH, J. ANDERSON, AND J. ROMBERG,
Efficient seismic forward modeling using simultaneous random sources and sparsity, submitted to
Geophysics, (2009).

[24] C. PAIGE AND M. SAUNDERS, Algorithm 583: LSQR: Sparse linear equations and least squares
problems, ACM Transactions on Mathematical Software (TOMS), 8 (1982), pp. 195–209.

[25] J. SCHOTLAND AND V. MARKEL, Inverse scattering with diffusing waves, J. Opt. Soc. Am. A., 18
(2001), pp. 2767–2777.

[26] G. STEWART, On the perturbation of pseudo-inverses, projections and linear least squares problems,
SIAM review, 19 (1977), pp. 634–662.

[27] , Perturbation theory for the singular value decomposition, Computer Science Technical Report
Series; Vol. CS-TR-2539, (1990), p. 13.

[28] L. YING, G. BIROS, AND D. ZORIN, A kernel-independent adaptive fast multipole method in two and
three dimensions, Journal of Computational Physics, 196 (2004), pp. 591–626.

27


	Introduction
	Definition of the inversion formula
	Summary of FaIMS
	Randomized and recursive SVDs
	Randomized SVD
	Recursive SVD

	FaIMS
	Numerical experiments
	Description of the test problems
	Results

	Conclusions

