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Abstract. We propose a method for the analysis of Magnetic Resonance
(MR) cardiac images with the goal of reconstructing the motion of the
ventricular walls. The main feature of our method is that the inversion
parameter field is the active contraction of the myocardial fibers. This
is accomplished with biophysically-constrained, four-dimensional (space
plus time) formulation that aims to complement information that can
be gathered from the images by a priori knowledge of cardiac mechanics
and electrophysiology. Our main hypothesis is that by incorporating bio-
physical information, we can generate more informative priors and thus,
more accurate predictions of the ventricular wall motion. In this paper,
we outline the formulation, discuss the computational methodology for
solving the inverse motion estimation, and present preliminary results
using synthetic data. We integrate an in-house spatially non-uniform oc-
tree meshing scheme with an adjoint-based inversion solver. The overall
method uses patient-specific MR data and fiber information to recon-
struct the motion. In these preliminary tests, we verify the implementa-
tion and conduct a parametric study to test the sensitivity of the model
to material properties perturbations, model errors, and incomplete and
noisy observations.

Imaging can help in the diagnosis of cardiac masses, cardiomyopathy, my-
ocardial infarcion, and valvular disease. Cine Magnetic Resonance Imaging (cine-
MRI) is emerging as the method of choice for diagnosing a variety of cardiovascu-
lar disorders [1,2]. Alternative specialized pulse sequences (e.g., tagged cine-MRI)
can create rich image features, but they have lower resolution and signal-to-noise
ratio. In addition, computational challenges limit analysis to 3D (2D × time)
motion estimation, where in fact 4D analysis would be preferable [3,4].1 Segmen-
tation of the ventricles and the myocardium is the first step toward quantitative
functional analysis of cine-MRI data. However, segmentation is time consuming,
thereby limiting clinical throughput [5]. Moreover, sometimes accuracy is limited
by long-axis motion, and inter and intra-observer variability [6].

Related work. To address these problems in motion reconstruction, one
of the main thrusts in recent research has been 4D motion estimation using

1 Other modalities, like stimulated-echo, and phase-contrast MR can be used but are
problematic with respect noise-to-signal ratio, resolution, and acquisition time.



biomechanical models.2 There is significant work on the integration of imaging
with cardiovascular mechanics. In [7], a piecewise linear composite biomechani-
cal model was used to determine active forces and the strains in the heart based
on tagged MRI information. In [8] and [9], echocardiography and MR images
were combined with biomechanical models for cardiac motion estimation. Inter-
active segmentation was combined with a Bayesian estimation framework that
was regularized by an anisotropic, passive, linearly elastic, myocardium model.
The authors recognized the importance of neglecting active contraction of the
left ventricle. In [10,11,12], the need for realistic simulations and the need for
inversion and data assimilation was outlined. In [13], Kalman filters were used
to recover the initial state of the heart and spatial abnormalities. That method
however, is difficult to generalize to nonlinear inversion with time-dependent
inversion parameters.

Contributions In this article, we propose a biomechanically-constrained
motion estimation algorithm that has the potential to partially address motion
estimation problems. It is based on a PDE-constrained optimization formula-
tion that explicitly couples raw image information with a biomechanical model
of heart. We discuss the formulation, numerical implementation, and we present
preliminary verification tests that confirm the potential of the method. The nov-
elty of our approach is on the formulation and the algorithmics (solvers and
parallel implementation). The main features of our scheme are (1) a patient-
specific image-based inversion formulation for the active forces; (2) a multigrid-
accelerated, octree-based, adaptive finite-element forward solver that incorpo-
rates anatomically-accurate fiber information; and (3) an adjoint/Hessian-based
inversion algorithm. This work builds on our previous work on massively par-
allel octree-based methods [14], and large-scale inverse algorithms for acoustic
and elastic scattering [15]. Our method requires (1) segmentation of the blood
pool and myocardium at the initial frame to assign material properties and (2)
a deformable registration to a template to map fiber-orientations the template
to the patient. This is done using our in-house tensor mapping method [16].

1 Formulation of the inverse problem

The basic premise of our formulation is the following: The heart motion is in-
duced by the active forces in the myocardium. If we knew the exact biomechanical
model for the myocardial tissue (constitutive law, geometry, fiber orientations,
material properties for the heart and surrounding tissues, endocardial tractions
due to blood flow) and the active stretching time-space profile, then we could
solve the so-called “forward problem” for the displacements of the myocardial
tissue. Similarly, if we knew the displacements at certain locations in the my-
ocardium, we could solve the so-called “inverse problem” to reconstruct active
forces so that the motion due to the reconstructed forces matches the observed
one. More generally, we have cine-MRI data but not the displacements. We can

2 Due to space limitations we do not attempt to review all related literature.



still invert for the displacements—by solving a biomechanically-constrained im-
age registration problem.

In this context, an abstract formulation of the myocardium motion estimation
problem is given by

min
u,s
J (It, I0, u) subject to C(u, s) = 0. (1)

Here, It := It(x, t) is the cine-MR image sequence with x, t denoting the space-
time coordinates, I0 := I(x, 0) is the initial frame (typically end-diastole), u :=
u(x, t) is the displacement (motion), s = s(x, t) is the active fiber contraction,
and C is the forward problem operator. Also, J is an image similarity mea-
sure functional. This is a classical PDE-constrained inverse problem [15]. Notice
that there is no need for elastic, fluid, or any kind of regularization for u. It is
constrained through the biomechanical model C.3

Objective function (Operator J ). For the purposes of this paper, we as-
sume a preprocessing step, in which we apply a keypoint-matching algorithm
[17] on the data It: we compute point-correspondences for all time frames, i.e.,
dj(t) := u(xj , t)

M
i=1 at M points.4 Then, the objective function is given by

J :=
∫ 1

0

(Qu− d)2 dt :=
∫ 1

0

M∑
i=1

(u(xj , t)− dj(t))2 dt, (2)

where Q is the so called spatial observation operator.
Forward problem (Operator C). We make several approximations. we as-

sume a linear isotropic inhomogeneous viscoelastic material for the myocardium;
we ignore the geometric nonlinearities in both material response and active
forces; we model the blood pool as an incompressible material with very small
stiffness and strong damping. We recognize that these are very strong assump-
tions but the model is meant to be driven by image data and assist in the motion
reconstruction. More complex models can be incorporated—if clinical validation
suggests the need to do so. In addition to the constitutive assumptions, we as-
sume a model for the active forces: given the fiber contractility s as a function
of space and time, we define the active stretch tensor U = 1 + s n ⊗ n, whose
divergence results in a distributed active force of the form div(s n ⊗ n). Taken
together, these assumptions result in the following form for C:

Mü(t) + Cu̇(t) +Ku(t) +As(t) = 0 t ∈ (0, 1). (3)

Using a Ritz-Galerkin formulation, with φ and ψ basis functions for u and s
respectively, the expressions for M , K and A(n) are given by Mij =

∫
I(φiφj),

K =
∫

(λ + µ)∇φi ⊗ ∇φj + µI(∇φi · ∇φj), Aij =
∫

(n ⊗ n)∇φiψj , and C =

3 However, one can show that the problem is ill-posed on s. Here we regularize by
discretization of s.

4 We are implementing an image registration functional that does not require such
point-correspondences.



αM + βK, with α and β viscous-damping parameters. Here, ⊗ is the outer vec-
tor product, λ and µ are the Lamé constants, and I is the 3D identity matrix.
Equation (3) is derived by the Navier linear elastodynamics equation [18]. The
domain of spatial integration (for M , K, and A) is the unit cube, corresponding
to the cine-MR domain. In our formulation, we solve for the motion of all the
tissue in the MR images. At the outer boundaries of the cube we impose ho-
mogeneous Neumann boundary conditions. Also, we assume zero displacements
and velocities as initial conditions.

Inverse problem. The inverse problem is stated by (1) where J is given by
(2) and C is given by (3). By introducing Lagrange multipliers p, the first-order
optimality conditions for (1) can be written as:

Mü(t) + Cu̇(t) +Ku(t) +As(t) = 0, u̇(0) = u(0) = 0,

Mp̈(t)− Cṗ(t) +Kp(t) +QT (Qu− d) = 0, ṗ(1) = p(1) = 0,

AT p(t) = 0.

(4)

The second equation is the so-called “adjoint problem”. Equation (4) consists
of a system of partial-differential equations for u (cardiac motion), p (adjoints),
and s (active fiber contraction). It is a 4D boundary value problem since we have
conditions prescribed at both t = 0 and t = 1.

Discretization and solution algorithms. We discretize the forward and
adjoint problems in space using a Ritz-Galerkin formulation. We have developed
a parallel data-structure and meshing scheme, discussed in [14]. The basis func-
tions are trilinear, piecewise continuous polynomials. In time, we discretize using
a Newmark scheme. The overall method is second-order accurate in space and
time. The implicit steps in the Newmark scheme are performed using Conjugate
Gradients combined with a domain-decomposition preconditioner in which the
local preconditioners are incomplete factorizations. The solver and the precon-
ditioner are part of the PETSc package [19].

For these particular choices of objective function and forward problem the
inverse problem (4) is linear in p, u, and s. We use a reduced space approach
in which we employ a matrix-free Conjugate-Gradients algorithm for the Schur-
complement of s—also called the (reduced) Hessian operator. Each matrix-vector
multiplication with the Hessian requires one forward and one adjoint cardiac
cycle simulation. Furthermore, one can show that the Hessian is ill-conditioned.
Thus, the overall computational cost of the inversion is high. We are developing
efficient multigrid schemes for the inverse problem. Details of this approach can
be found in [15]. To reduce the computational cost for the calculations in the
present paper, we used a reduced-order model for s in which ψ is a product of B-
splines in time and radial functions in space (Gaussians). This discretization not
only does it allow acceleration of the inverse problem but it introduces a model
error since the synthetic “ground truth” is generated using a full resolution fiber
model and the inversion is done using the reduced resolution fiber model. This
allows to perform preliminary tests on the sensitivity of our method to model
errors.
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Fig. 1: (a) The cylindrical model with the fiber orientations, (b) the deformations de-
veloped within the myocardium as a result of the contraction, and (c) the deformations
displayed along with the fiber orientations (blue line segments).

(a) (b) (c) (d) (e)

Fig. 2: The activation function used in the synthetic model of the heart. The activation
function starts at the apex and moves to the base of the ventricles.

2 Results

We first describe the set of experiments performed to validate the numerical ac-
curacy of the forward cardiac model. We used a simple cylindrical model where
the fiber orientations are circumferential and downwards, leading to the gener-
ation of radial forces and deformations. This model is shown in Figure 1 The
second model used was constructed from a MR image of a human heart. The
fiber orientation was obtained from ex-vivo Diffusion Tensor (DTI) images of
the heart. In order to drive the forward model, we generated forces by propa-
gating a synthetic activation wave from the apex to the base of the ventricles.
Snapshots of this activation wave at different phases of the cardiac cycle are
shown in Figure 2. The fiber orientation, the myocardial forces and the result-
ing deformations within the myocardium are shown at different slices and time
points in Figures 3 and 4. For both models we selected a Poisson’s ratio ν = 0.45
and a Young’s modulus of 10 kPa for the myocardial tissue and 1 kPa for the
surrounding tissue and ventricular cavity. Raleigh damping (C = αM + βK)
was used with parameters α = 0 and beta = 7.5× 10−4.

We use the cylinder model to study the convergence of the forward solver
by comparing the results obtained from the numerical solver with the analytical
solution. The solution was obtained for discretizations corresponding to regu-
lar grids 323, 643 and 1283 and 50, 100, and 200 time steps respectively. The
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Fig. 3: (a) The orientation of the cardiac fibers, (b) the forces developed within the my-
ocardium as a result of the contraction of the fibers, and (c) the resulting deformations
within the myocardium.

(a) (b) (c)

Fig. 4: The deformations induced by the propagation of the activation from the apex to
the base.

use of octrees for meshing reduced the number of elements significantly. We ob-
served O(h2) convergence, where h is the grid size. These results, along with
the number of processors used and the time for the computation are tabulated
in Table 1. For the inverse problem, we validate the error in the estimation of

Grid Size Number of Octants Number of Processors Relative Error ‖ · ‖2 Time (secs)

323 7719 1 7.63× 10−2 81
643 52K 8 1.91× 10−2 101
1283 256K 64 4.77× 10−3 113

Table 1: Convergence results for the forward model using the cylinder geometry. All
errors are with respect to the analytical solution.

the activations for different degrees of parametrization using the radial basis.
In all cases, the number of b-Spline basis per spatial location were fixed to 5
degrees of freedom. The relative error in the estimation of the activation for a
643 grid is for spatial parametrizations of 23, 43 and 83 is tabulated in Table 2.
Ground truth activations are generated using a 2. These runs were done on 64
processors. In addition, we investigated the error in the estimation when only



Basis Size Relative Error ‖ · ‖2 Time

23 1.31× 10−1 36 mins

43 5.67× 10−2 ≈ 5 hrs

43 1.12× 10−1 108 mins

83 9.66× 10−2 141 mins

Table 2: Error in recovery of acti-
vation for increasing number of ra-
dial basis functions. By changing
the inversion solver accuracy, we
can accelerate the calculation with-
out compromising accuracy (e.g.,
the 43 calculation).

Observations Relative Error ‖ · ‖2
Full 5.36× 10−2

1/8 6.21× 10−2

1/64 8.51× 10−2

Table 3: Error in the recovery of
activation with partial observations
of the displacements. Errors are re-
ported on the cylinder model for a
grid size of 32 with 43 basis func-
tions.

partial observations are available. We compared estimations based on full and
sparse observations with 12% and 6% samples against the analytical solutions.
These results are tabulated in Table 3. In order to assess the sensitivity of the
motion estimation framework, we estimated the motion for the synthetic model
of the heart at a grid size of 64 with a radial basis parametrization of 43 by
adding noise to the system. We added a 5% random error on the estimates of
the fiber orientation and to the material properties of the myocardium. In addi-
tion, we added a 1% noise to the true displacements. The system converged and
the relative error (L2) increased from 5.67× 10−2 to 9.43× 10−2.

3 Conclusions

We presented a method for cardiac motion reconstruction. We integrate cine-MR
images and a biomechanical model that accounts for inhomogeneous tissue prop-
erties, fiber information, and active forces. We presented an inversion algorithm.
We will able to solve problems that involve 300 million unknowns (forward and
adjoint in space-time) in a couple of hours on 64 processors—a modest com-
puting resource. The potential of the method as multicore platforms become
mainstream is significant.

The limitations of our current implementation (but not the method) is the
assumptions of linear geometric and material response and the potential bias
due to template-based fibers that does not account for anatomical variability,
that is still requires some preprocessing of the initial frame to assign material
properties and fiber orientation, that assumes zero residual stresses and initial
conditions, and that it does not include an electrophysiology model.

Our on-going work includes transition to an intensity-based image-registration
inversion (in which case we need to solve a nonlinear inversion), further verifica-
tion of the method by comparing to manually-processed real data, and its clinical
validation by reconstructing motions of normal and abnormal populations and
conducting statistical analysis. Among the many open problems are the level
of required model complexity for clinically relevant motion reconstructions, the
bias of the fibers, the sensitivity to the values of the material properties, and the
sensitivity to the image similarity functional.
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