
BOTTOM-UP CONSTRUCTION AND 2:1 BALANCE REFINEMENT
OF LINEAR OCTREES IN PARALLEL∗

HARI SUNDAR† , RAHUL S. SAMPATH‡ , AND GEORGE BIROS§

Abstract. In this article, we propose new parallel algorithms for the construction and 2:1 bal-
ance refinement of large linear octrees on distributed memory machines. Such octrees are used in
many problems in computational science and engineering, e.g., object representation, image analysis,
unstructured meshing, finite elements, adaptive mesh refinement and N-body simulations. Fixed-size
scalability and isogranular analysis of the algorithms, using an MPI-based parallel implementation,
was performed on a variety of input data and demonstrated good scalability for different proces-
sor counts (1 to 1024 processors) at the Pittsburgh Supercomputing Center’s TCS-1 AlphaServer.
The results are consistent for different data distributions. Octrees with over a billion octants were
constructed and balanced in less than a minute on 1024 processors. Like other existing algorithms
for constructing and balancing octrees, our algorithms have O(n log n) work and O(n) storage com-
plexity. Under reasonable assumptions on the distribution of octants and the work per octant, the
parallel time complexity is O(n/np log(n/np) + np log np), were n is the final number of leaves and
np is the number of processors.

Key words. Linear octrees, Balance refinement, Morton encoding, large scale parallel comput-
ing, space filling curves

AMS subject classifications. 65N50, 65Y05, 68W10, 68W15

1. Introduction. Spatial decompositions of the d-dimensional cube have im-
portant applications in scientific computing: they can be used as algorithmic founda-
tions for adaptive finite element methods [3, 19], adaptive mesh refinement methods
[16, 23], and many-body algorithms [15, 17, 31, 36, 38, 39]. The earliest examples
of tree-based spatial decompositions of Rn can be traced to the use of binary space
partitions [11, 12, 26]. Binary space partitioning (BSP) is a method for recursively
subdividing a space into convex sets by hyperplanes. This subdivision gives rise to a
representation of the space by means of a tree data structure known as a BSP tree.
The BSP partitions its domain into two subregions and therefore the BSP tree is a
binary tree. BSP trees can be used in spaces with any number of dimensions, but
quadtrees [9] and octrees [21] are most useful in partitioning 2D and 3D domains,
respectively. These use axis aligned lines and planes, respectively, instead of arbitrary
hyperplanes and are efficient for the specific domains they are intended to work on.

Octrees and quadtrees are usually employed while solving two types of problems:
searching and partitioning. Searches within a domain using d-trees (d-dimensional
trees with a maximum of 2d children per node), benefit from the reduction of the com-
plexity of the search from O(n) to O(log n). Similar benefits can be obtained by the
use of space-filling curves [32]. This equivalence has been used in linear quadtree and

∗ This work was supported by the U.S. Department of Energy under grant DE-FG02-04ER25646,
and the U.S. National Science Foundation grants CCF-0427985, CNS-0540372, and DMS-0612578.
Computing resources on the TeraGrid’s HP AlphaCluster system at the Pittsburgh Supercomputing
Center were provided under the award MCA04T026.

†Department of Bioengineering, University of Pennsylvania, 120 Hayden Hall, 3320 Smith Walk,
Philadelphia, PA, 19104-2688 (hsundar@seas.upenn.edu).

‡Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220
S, 33rd Street, Philadelphia, PA, 19104-6315 (rahulss@seas.upenn.edu).

§Departments of Mechanical Engineering and Applied Mechanics, and Computer and Infor-
mation Science, University of Pennsylvania, 220 S, 33rd Street, Philadelphia, PA, 19104-6315
(biros@seas.upenn.edu).

1

2 H. SUNDAR, R.S. SAMPATH AND G. BIROS

octree representations [4, 35], including the current work. Unstructured meshes are of-
ten preferred over uniform discretizations because they can be used with complicated
domains and permit rapid grading from small to large elements. However, generating
large unstructured meshes is a challenging task [28]. On the contrary, octree-based
unstructured hexahedral meshes can be constructed efficiently [5, 14, 24, 25, 27, 34].
Although they are not suitable for highly complicated geometries, they provide a
good compromise between adaptivity and simplicity for numerous applications like
solid modeling [21], object representation [1, 6], visualization [10], image segmentation
[30], adaptive mesh refinement [16, 23] and N-body simulations [15, 17, 31, 36, 38, 39].

Octree data structures used in discretizations of partial differential equations
should satisfy certain spatial distribution of octant size [4, 35]. That is, adjacent
octants should not differ greatly in size1. Furthermore, conforming discretizations
require a so-called ‘balance condition’ that is necessary to construct appropriate func-
tion spaces. In particular, when the 2:1 balance constraint is imposed on octree-based
hexahedral meshes, it ensures that there is at most one dangling node on any edge or
face. What makes the balance-refinement problem difficult and interesting is a prop-
erty known as the ripple effect: An octant can trigger a sequence of splits whereby it
can force an octant to split, even if it is not in its immediate neighborhood. Hence,
balance-refinement is an inherently iterative process. Solving the balance-refinement
problem in parallel, introduces further challenges in terms of synchronization and
communication since the ripple can propagate across multiple processors.

Related Work. Limited work has been done on large scale parallel construction
[17, 37, 39] and balance refinement [19, 35] of octrees, and the best known algorithms
exhibit suboptimal isogranular scalability. The key component in constructing octrees
is the partitioning of the input in order to achieve good load balancing. The use of
space-filling curves for partitioning data has been quite popular [17, 35, 37, 39]. The
proximity preserving property of space-filling curves makes them attractive for data
partitioning. All the existing algorithms for constructing octrees use a top-down
approach after the initial partition. The major hurdle in using a parallel top-down
approach is avoiding overlaps. This typically requires some synchronization after
constructing a portion of the tree [35, 37, 39]. Section 3.1 describes the issues that
arise in using a parallel top-down approach.

Bern et al. [4] proposed an algorithm for constructing and balancing quadtrees
for EREW PRAM architectures. However, it cannot be easily adapted for distributed
architectures. In addition, the balanced quadtree produced is suboptimal and can
have up to 4 times as many cells as the optimal balanced quadtree. Tu et al. [35]
propose a more promising approach, which was evaluated on large octrees. They
construct and balance 1.22B octants for the Greater Los Angeles basin dataset [20] on
2000 processors in about 300 seconds. This experiment was performed on the TCS-
1 terascale computing HP AlphaServer Cluster at the Pittsburgh Supercomputing
Center. In contrast, we construct and balance2 1B octants (approximately) for three
different point distributions (Gaussian, Log-Normal and Uniform) on 1024 processors
on the same cluster in about 60 seconds.

Synopsis and Contributions. In this paper we present two parallel algorithms:

1This is referred to as the 2:1 balance constraint. A formal definition of this constraint is given
in section 2.2.

2While we enforce the 0-balance constraint, [35] only enforce the 1-balance constraint. Note that
it is harder to 0-balance a given octree. See section 2.2 for more details on the different balance
constraints.

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 3

one to construct complete linear octrees from a list of points; and one to enforce
an optimal 2:1 balance constraint3 on complete linear octrees. We use a linear oc-
tree Morton-encoding-based representation. Given a set of points, partitioned across
processors, we create a set of octants that we sort and repartition using the Mor-
ton ordering. A complete linear octree is constructed using the seed octants. Then,
we built an additional auxiliary list of a small number of coarse octants or blocks.
This auxiliary octant set encapsulates and compresses the local spatial distribution
of octants; it is used to accelerate the 2:1-balance refinement, which we implement
using a hybrid strategy: intra-block balancing is performed by a classical level-by-
level balancing/duplicate-removal scheme; and inter-block balancing is performed by
a variant of the ripple-propagation algorithm proposed in [35]. The main parallel
tools used are sample sorts (accelerated by biotonic sorts), and standard point-to-
point/collective communication calls.4

In a nutshell, the major contributions of this work are:
• A parallel bottom-up algorithm for coarsening octrees, which is also used for

partitioning the input in our other algorithms.
• A parallel bottom-up algorithm for constructing linear octrees. We avoid

the synchronization issues that are usually associated with parallel top-down
approaches to the problem.
• An algorithm for enforcing 2:1 balance refinement in parallel. The algorithm

constructs the minimum number of nodes to satisfy the 2:1 constraint. Its
key feature is that it avoids parallel searches, which as we show in sections
3.5.6 and 3.5.7, are the main hurdles in achieving good isogranular scalability.

Remark: The main parallel cost of the algorithm is that related to the parallel
sorts that run in O(n log n) work and O(n/np log(n/np) + np log(np)) time, assum-
ing uniformly distributed points [13]. In the following sections we present several
algorithms for which we give precise work and storage complexity. For some of the
parallel algorithms we also give time complexity estimates; this corresponds to wall-
clock time and includes work/per processor and communication costs. The precise
number depends on on the initial distribution and the effectiveness of the partitioning.
Thus the numbers for time are only an estimate under uniform distribution assump-
tions. If the time complexity is not specifically mentioned then it is comparable to
that of a sample-sort.

Organization of the paper. In section 2 we introduce some terminology that will
be used in the rest of the paper. Section 3 describes the various components of our
construction and balance refinement algorithms. In Section 4 we present numerical
experiments, including fixed size and isogranular scalability tests on different data
distributions. Finally, in Section 5 shortcomings of the proposed approach are dis-
cussed and some suggestions for future work are also offered. Table 1.1 summarizes
the notation that is used in the subsequent sections.

2. Background. Octrees are trees in which every node has a maximum of eight
children. They are analogous to binary trees (maximum of 2 children per node) in
1-D and quadtrees (maximum of 4 children per node) in 2-D. A node with no children
is called a leaf. The only node with no parent is the root. Nodes that have the same
parent are called siblings. A node’s children, grandchildren and so on and so forth are
collectively referred to as the node’s descendants and this node will be an ancestor of

3There exists a unique least common balance refinement for a given octree [22].
4When we discuss communication costs we assume a Hypercube network topology with Θ(np)

Bisection Width.

4 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Table 1.1
Notation

Dmax Maximum depth of the tree.
L(N) Level of octant N .
P(N) Parent of octant N .
S(N) Siblings (sorted) of octant N .
C(N) Children (sorted) of octant N .
D(N) Descendant of octant N .
FC(N) First child of octant N .
LC(N) Last child of octant N .
FD (N, l) First descendant of octant N at level l.
LD (N, l) Last descendant of octant N at level l.
DFD(N) Deepest first descendant of octant N .
DLD(N) Deepest last descendant of octant N .
A(N) Ancestor of octant N .
Afinest (N,K) Nearest Common Ancestor of octants N and K.
N (N, l) List of all potential neighbors of octant N at level l.
N s (N, l) A subset of N (N, l), with the property that all of

these share the same common corner with N . This
is also the corner that N shares with its parent.

N (N) Neighbor of N at any level.
I(N) Insulation layer around octant N .
{. . .} A set of elements.
∅ The empty set.
A← B Assignment operation.
A⊕B Bitwise A XOR B.
{A} ∪ {B} Union of the sets A and B. The order is

preserved, if possible.
{A} ∩ {B} Intersection of the sets A and B.
A + B The list formed by concatenating the lists A and B.
A−B Remove the contents of B from A.
A[i] ith element in list A.
len(A) Number of elements in list A.
Sort(A) Sort A in the ascending Morton order.
A.push front(B) Insert B to the beginning of A.
A.push back(B) Append B to the end of A.
Aglobal Union of the list A from all the processors.
np Total number of processors.
Send(A,r) Send A to processor with rank = r.
Receive() Receive from any processor.
Np

max Maximum number of points per octant.

its descendants. A node along with all its descendants can be viewed as a separate
tree in itself with this node as its root. Hence, this set is also referred to as a subtree
of the original tree. The depth of a node from the root is referred to as its level. As
shown in Fig. 2.1(a), the root of the tree is at level 0 and the children of any node
are one level higher than the parent.

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 5

Level 0

Level 1

Level 2

Level 3

Non-LeafLeafRoot

a

b c d e

f g

h i

j k l m

(a)

i

j k

l m

f g

h

a

b c

d e

(b)

i

h1a
b c

d e

f g

j k

l m

h3 h4

h2

(c)

Fig. 2.1. (a) Tree representation of a quadtree and (b) decomposition of a square domain
using the quadtree, superimposed over an uniform grid, and (c) a balanced linear quadtree: result
of balancing the quadtree.

Octrees and quadtrees5 can be used to partition cuboidal and rectangular regions,
respectively (Fig. 2.1(b)). These regions are referred to as the domain of the tree.
A set of octants is said to be complete if the union of the regions spanned by them
covers the entire domain. To reduce storage costs, only the complete list of leaf nodes
is stored, i.e., as a linear octree. To use a linear representation, a locational code is
needed to identify the octants. A locational code is a code that contains information
about the position and level of the octant in the tree. The following section describes
one such locational code known as the Morton encoding6.

2.1. Morton encoding. In order to construct a Morton encoding, the maxi-
mum possible depth, Dmax, of the tree is specified a priori. The domain is represented
by an uniform grid of 2Dmax indivisible cells in each dimension (Fig. 2.1(b)). Each cell
is identified by an integer triplet representing its x, y and z coordinates, respectively.
Any octant in the domain can be uniquely identified by specifying one of its corners,
also known as its anchor, and its level in the tree (Fig. 2.2).

The Morton encoding for any octant is derived by interleaving7 the binary repre-
sentations (Dmax bits each) of the three coordinates of the octant’s anchor, and then
appending the binary representation ((b(log2 Dmax)c+1) bits) of the octant’s level to
this sequence of bits. Interesting properties of the Morton encoding scheme are listed
in Appendix A. In the rest of the paper the terms lesser and greater and the symbols
< and > are used to compare octants based on their Morton ids, and coarser and
finer to compare them based on their relative sizes, i.e., their levels in the octree.

2.2. Balance Constraint. In many applications involving octrees, it is desir-
able that adjacent elements do not differ greatly in size [18, 19, 35]. Generalizing
Moore’s [22] categorization of the general balance conditions, we have the following
definition:

5All the algorithms described in this paper are applicable to both octrees and quadtrees. For
simplicity, we will use quadtrees to illustrate the concepts in this paper and use the terms ‘octrees’
and ‘octants’, consistently, in the rest of the paper.

6Morton encoding is one of many space-filling curves [7]. Our algorithms are generic enough
to work with other space-filling curves as well. However, Morton encoding is relatively simpler to
implement since, unlike other space-filling curves, no rotations or reflections are performed.

7Instead of bit-interleaving as described here, we use a multicomponent version (Appendix B) of
the Morton encoding scheme.

6 H. SUNDAR, R.S. SAMPATH AND G. BIROS

d’s anchor (4,2)

Binary Form (0100,0010)

Interleave Bits
0100 0010

00011000
Append d’s level (3)

011

00011000011

Fig. 2.2. Computing the Morton id of quadrant ‘d’ in the quadtree shown in Fig. 2.1(b). The
anchor for any quadrant is it’s lower left corner.

Definition 1. A linear d-tree is k-balanced if and only if, for any l ∈ [1, Dmax),
no leaf at level l shares an m-dimensional face8 (m ∈ [k, d)) with another leaf, at level
greater than l + 1.

For the specific case of octrees we use 2-balanced to refer to octrees that are
balanced across faces, 1-balanced to refer to octrees that are balanced across edges
and faces, and 0-balanced to refer to octrees that are balanced across corners, edges
and faces. An example of a 0-balanced quadtree is shown in Figure 2.1(c). The
balance algorithm proposed in this work is capable of k-balancing a given complete
linear octree, and since it is hardest to 0-balance a given octree we report all results
for the 0-balance case.

3. Algorithms.

3.1. Constructing large linear octrees in parallel. Octrees are usually con-
structed by using a top-down approach: starting with the root octant, cells are split
iteratively based on some criteria, until no further splits are required. This is a simple
and efficient sequential algorithm. However, it’s parallel analogue is not so. We use
the case of point datasets to discuss some shortcomings of a parallel top-down tree
construction. Formally, the problem might be stated as: Construct a complete linear
octree in parallel from a distributed set of points in a domain with the constraint that
no octant should contain more than (Np

max) number of points. Each processor can
independently construct a tree using a top-down approach on its local set of points.
Constructing a global linear octree requires a parallel merge. Merging however, is not
straightforward.

1. Consider the case where the local number of points in some region on every
processor was less than (Np

max), and hence all the processors end up having
the same level of coarseness in the region. However, the total number of points
in that region could be more than (Np

max) and hence the corresponding octant
should be refined further.

8A corner is a 0-dimensional face, an edge is a 1-dimensional face and a face is a 2-dimensional
face.

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 7

Algorithm 1. Constructing a complete linear octree from a
distributed list of points (parallel) - Points2Octree

Input: A distributed list of points, L and a parameter, (Np
max),

which specifies the maximum number of points per octant.
Output: Complete linear Octree, B.
Work: O(n log n), where n = len(L).
Storage: O(n), where n = len(L).

1. F ← [Octant(p,Dmax),∀p ∈ L]
2. Sort(F)
3. B ← BlockPartition(F) (Algorithm 4)
4. for each b ∈ B
5. if NumberOfPoints(b) > Np

max

6. B ← B − b + C(b)
7. end if
8. end for

2. In most applications, we would also like to associate a unique processor to
each octant. Thus, duplicates across processors must be removed.

3. For linear octrees overlaps across processors must be resolved.
4. Since there might be overlaps and duplicates, not all the work done by the

processors can be accounted as useful work. This is a subtle yet important
point to consider while analyzing the algorithm for load-balancing.

Previous work [17, 35, 37, 39] on this problem has addressed these issues; However,
all the existing algorithms involve many synchronization steps and thus suffer from
a sizable overhead, resulting in suboptimal isogranular scalability. Instead, we pro-
pose a bottom-up approach for constructing octrees from points. The crux of the
algorithm is to distribute the data across the processors in such a way that there is
uniform load distribution across processors and the subsequent operations to build the
octree can be performed by the processors independently, i.e., requiring no additional
communication.

First, all points are converted into octants at the maximum depth and then par-
titioned across the processors using the algorithm described in Section 3.4.1. This
produces a contiguous set of coarse blocks (with their corresponding points) on each
processor. The complete linear octree is generated by iterating through the blocks
and by splitting them based on number of points per block9. This process is continued
until no further splits are required. This procedure is summarized in Algorithm 1.

Next we describe algorithmic components that are fundamental to our construc-
tion and balance refinement algorithms: 1) the generation of a coarse linear octree
between two given octants; 2) generation of a complete linear octree from a partial
set of octants; and 3) coarsening of octrees.

3.2. Constructing a minimal linear octree between two octants. Given
two octants, a and b > a, we wish to generate the minimal number of octants that

9Refer to the Appendix D on how to sample the points in order to construct the coarsest possible
octree.

8 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Fig. 3.1. (a) Two cells: Input to Algorithm 2. (b) The minimal number of octants between
the cells given in (a). This is produced by using (a) as input to Algorithm 2.

Algorithm 2. Constructing a minimal linear octree between two
octants (sequential) - CompleteRegion

Input: Two octants, a and b > a.
Output: R, the minimal linear octree between a and b.
Work: O(n log n), where n = len(R).
Storage: O(n), where n = len(R).

1. W ← C(Afinest (a, b))
2. for each w ∈W
3. if (a < w < b) AND (w /∈ {A(b)})
4. R← R + w
5. else if (w ∈ {{A(a)} , {A(b)}})
6. W ←W − w + C(w)
7. end if
8. end for
9. Sort(R)

span the region between a and b according to the Morton ordering. The algorithm
(Algorithm 2) first calculates the nearest common ancestor of the octants a and b.
This octant is split into its eight children. Out of these, only the octants that are
either greater than a and lesser than b or ancestors of a are retained and the rest
are discarded. The ancestors of either a or b are split again and we iterate until no
further splits are necessary. This produces the minimal coarse complete linear octree
between the two octants a and b. This is illustrated in Figure 3.1. This algorithm is
based on the Properties 3 and 4 of the Morton ordering, which are listed in Appendix
A.

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 9

Fig. 3.2. (a) A partial set of quadrants: Input to Algorithm 3. (b) A complete linear quadtree
containing the cells in (a). This is produced by using (a) as input to Algorithm 3.

3.3. Constructing complete linear octrees from a partial set of octants.
In order to construct a complete linear octree from a partial set of octants (e.g. Figure
3.2(a)), the octants are initially sorted based on the Morton ordering. Algorithm 8
is subsequently used to remove overlaps, if any. Two additional octants are added to
complete the domain; the first one is the coarsest ancestor of the least possible octant
(the deepest first descendant of the root octant, Property 7), which does not overlap
the first given octant, and the second is the coarsest ancestor of the greatest possible
octant (the deepest last descendant of the root octant, Property 9), which does not
overlap the last given octant. The octants are distributed across the processors to
get a weight-based uniform load distribution, and such that the last element on any
processor is the same as the first element on the next processor. The local complete
linear octree is subsequently generated by completing the region between every con-
secutive pair of octants as described in Section 3.2. The overlap guarantees that the
union of these local complete octrees gives us a global complete and linear octree. We
ignore the last octant on each processor, except the last, since these were replicated.
This is illustrated in Figure 3.2.

3.4. Parallel bottom-up coarsening of octrees. Given a distributed list of
leaves, we want to construct a complete linear coarse octree. We first sort the leaves
according to their Morton ordering and then distribute them across the processors
so that every processor has the same number of leaves. We select the least and the
greatest octant at each processor (e.g., octants a and h from Figure 3.3(a)) and
complete the region between them, as described in Section 3.2, to obtain a list of
coarse octants. We then select the coarsest cell(s) out of this list of coarse octants
(octant e in Figure 3.3(a)). We use the selected octants at each processor and
construct a complete linear octree as described in Section 3.3. This gives us a global
coarse complete linear octree that is based on the underlying data distribution10.

3.4.1. Using the parallel coarsening algorithm for partitioning octants.
A simple way to partition the domain into an union of blocks would be to take a

10Refer to the Appendix C for an estimate of the number of blocks produced.

10 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Algorithm 3. Constructing a complete linear octree from a partial
(incomplete) set of octants (parallel) - CompleteOctree

Input: A distributed sorted list of octants, L.
Output: R, the complete linear octree.
Work: O(n log n), where n = len(R).
Storage: O(n), where n = len(R).

1. RemoveDuplicates(L)
2. L← Linearise(L) (Algorithm 8)
3. Partition(L) (Algorithm 5)
4. if rank = 0
5. L.push front(FC (Afinest (DFD(root), L[1])))
6. end if
7. if rank = (np − 1)
8. L.push back(LC (Afinest (DLD(root), L[len (L)])))
9. end if
10. if rank > 0
11. Send(L[1],(rank−1))
12. end if
13. if rank < (np − 1)
14. L.push back(Recieve())
15. end if
16. for i← 1 to (len(L)− 1)
17. A← CompleteRegion (L[i], L[i + 1]) (Algorithm 2)
18. R← R + L[i] + A
19. end for
20. if rank = (np − 1)
21. R← R + L[len(L)]
22. end if

Regions Not Relevant

Regions Not Relevant

a

b c
d

e

f g

h

(a) (b) (c)

Fig. 3.3. (a) A minimal list of quadrants covering the local domain on some processor, and
(b) A Morton ordering based partition of a quadtree across 4 processors, and (c) Coarse quadrants
and partition produced by using the quadtree shown in (b) as input to Algorithm 4.

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 11

Algorithm 4. Partitioning octants into large contiguous blocks
(parallel) - BlockPartition

Input: A distributed sorted list of octants, F.
Output: A list of the blocks, G. F is re-distributed,

but the relative order of the octants is preserved.
Work: O(n), where n = len(F).
Storage: O(n), where n = len(F).
Time: Refer to the Appendix C.

1. T ← CompleteRegion(F [1], F [len(F)]) (Algorithm 2)
2. C ← {x ∈ T | ∀y ∈ T, L(x) ≤ L(y)}
3. G← CompleteOctree(C) (Algorithm 3)
4. for each g ∈ G
5. weight(g) ← len(Fglobal ∩ {g, {D(g)}})
6. end for
7. Partition(G) (Algorithm 5)
8. F ← Fglobal ∩ {{g, {D(g)}}, ∀ g ∈ G}

top-down approach and create a coarse regular grid, which can be divided11 amongst
the processors. However, this approach does not take load balancing into account
since it does not use the underlying data distribution. Alternatively, one could use a
space-filling curve to sort the octants and then partition them so that every processor
gets an almost equal sized chunk of octants, contiguous in this order. Two desirable
qualities of any partitioning strategy are load balancing, and minimization of overlap
between the processor domains. We use our parallel bottom-up coarsening strategy to
achieve these. First, we construct a global coarse linear octree based on the underlying
distribution as described in section 3.4. In order to assign these coarse blocks to the
processors, we first compute the load of each block by computing the number of
original octants that lie within each of these blocks. The blocks are then distributed
across the processors such that the total weight on each processor is roughly the
same12. Note that the domain occupied by the blocks and the original octants on any
given processor is not the same, but it does overlap to a large extent. The overlap
is guaranteed by the fact that both are sorted according to the Morton ordering and
that the partitioning was based on the same weighting function (i.e., the number of
original octants). The original octants are then partitioned to align with the coarse
block boundaries. Algorithm 4 lists all the steps described above and Figures 3.3(b)
and 3.3(c) illustrate a sample input to Algorithm 4 and the corresponding output,
respectively.

3.5. Balancing large linear octrees in parallel. Balance refinement is the
process of refining (subdividing) nodes in a complete linear octree, which fail to sat-
isfy the balance constraint described in Section 2.2. The nodes are refined until all

11If we create a regular grid at level l then the number of cells will be n = 2dl, where d is the
dimension. l is chosen in such a way that n > p.

12Some of the coarse blocks could be split if it facilitates achieving better load balance across the
processors.

12 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Algorithm 5. Partitioning a distributed list of octants (parallel) -
Partition

Input: A distributed list of octants, W.
Output: The octants re-distributed across processors so that

the total weight on each processor is roughly the same.
The relative order of the octants is preserved.

Work: O(n), where n = len(W).
Storage: O(n), where n = len(W).

1. S ← Scan(weight(W))
2. if rank = (np − 1)
3. TotalWeight ← max(S)
4. Broadcast(TotalWeight)
5. end if
6. w̄ ← TotalWeight

np

7. k ← (TotalWeight) mod np

8. for p← 1 to np

9. if p ≤ k
10. Q← {x ∈W | (p− 1).(w̄ + 1) ≤ S(x) < p.(w̄ + 1)}
11. else
12. Q← {x ∈W | (p− 1).w̄ + k ≤ S(x) < p.w̄ + k}
13. end if
14. Qtot ← Qtot + Q
15. Send(Q, (p− 1))
16. end for
17. R← Receive()
18. W ←W −Qtot + R

their descendants, which are created in the process of subdivision, satisfy the balance
constraint. These subdivisions could in turn introduce new imbalances and so the
process has to be repeated iteratively. The fact that an octant can affect octants not
immediately adjacent to is known as the ripple effect.

We use a two-stage balancing scheme: first we perform local balancing on each
processor, and follow this up by balancing across the inter-processor boundaries. One
of the goals is to get a union of blocks (select non-leaf nodes of the octree) to reside on
each processor so that the surface area and thereby the corresponding inter-processor
boundaries are minimized. Determining whether a given partition provides the mini-
mal surface area13 is NP complete and determining the optimal partition is NP hard,
since the problem is equivalent to the set-covering problem [8].

We use the parallel coarsening and partitioning algorithm (described in sections
3.4 and 3.4.1) to construct coarse blocks on each processor and to distribute the
underlying octants. By construction, the domains covered by these blocks are disjoint
and the union of these blocks covers the entire domain. We use the blocks as a

13The number of cells at the boundary depends on the underlying distribution and cannot be
known a priori. This further complicates the balancing algorithm.

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 13

means to minimize the number of octants that need to be split due to inter-processor
violations of the 2:1 balancing rule.

3.5.1. Local balancing. There are two approaches for balancing a complete
octree. In the first approach, every node constructs the coarsest possible neighbors
satisfying the balance constraint, and subsequently duplicates and overlaps are re-
moved [4]. We describe this approach in Algorithm 6. In an alternative approach, the
nodes search for neighbors and resolve any violations of the balance constraint [33, 35].
The main advantage of the former approach is that constructing nodes is inexpensive,
since it does not involve any searches. However, this could produce a lot of duplicates
and overlaps making the linearizing operations expensive. Another disadvantage of
this approach is that it cannot handle incomplete domains, and can only operate on
subtrees. The advantage of the second approach is that the list of nodes is complete
and linear at any stage in the algorithm. The drawback, however, is that searching for
neighbors is an expensive operation. Our algorithm uses a hybrid approach: it keeps
the number of duplicates and overlaps to a minimum and also reduces the search space
thereby reducing the cost of the searching operation. The complete linear octree is
first partitioned into coarse blocks using the algorithm described in Section 3.4.1. The
descendants of any block, which are present in the fine octree, form a linear subtree
with this block as its root. This block-subtree is first balanced using the approach
described in Section 3.5.2; the size of this tree will be relatively small, and hence the
number of duplicates and overlaps will be small too. After balancing all the blocks,
the inter-block boundaries in each processor are balanced using a variant of the ripple
propagation algorithm [35] described in Section 3.5.4. The performance improvements
from using the combined approach are presented in Section 4.2.

3.5.2. Balancing a local block. In principle, Algorithm 6 can be used to con-
struct a complete balanced subtree of this block for each octant in the initial un-
balanced linear subtree. Note that these balanced subtrees may have substantial
overlap. Hence, Algorithm 8 is used to remove these overlaps. Lemma 3.1 shows
that this process of merging these different balanced subtrees results in a complete
linear balanced subtree. However, this implementation would be inefficient due to the
number of overlaps, which would in turn increase the storage costs and also make the
subsequent operations of sorting and removing duplicates and overlaps more expen-
sive. Instead, we interleave the two operations: constructing the different complete
balanced subtrees and merging them. The overall scheme is described in Algorithm
7.

We note that a list of octants form a balanced complete octree, if and only if for
every octant all its neighbors are at the same level as this octant or one level finer
or one level coarser. Hence, the coarsest possible octants in a complete octree that
will be balanced against this octant are the siblings and the neighbors at the level of
this octant’s parent. Starting with the finest level and iterating over the levels up to
but not including the level of the block, the coarsest possible (without violating the
balance constraint) neighbors (Figure 3.4) of every octant at this level in the current
tree (union of the initial unbalanced linear subtree and newly generated octants)
are generated. After processing all the octants at any given level, the list of newly
introduced coarse octants is merged with the previous list of octants at this level and
duplicate octants are removed. The newly created octants are included while working
on subsequent levels. Algorithm 8 still needs to be used in the end to remove overlaps,
but the working size is much smaller now compared to the earlier case (Algorithm
6). To avoid redundant work and to reduce the number of duplicates to be removed

14 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Fig. 3.4. The minimal list of balancing quadrants for the current quadrant is shown. This list
of quadrants is generated in one iteration of Algorithm 6.

in the end, we ensure that no two elements in the working list at any given level are
siblings of one another. This can be done in a linear pass on the working list for that
level as shown in Algorithm 7.

Lemma 3.1. Let T1 and T2 be two complete balanced linear octrees with n1 and
n2 number of potential ancestors respectively, then

T3 = (T1 ∪ T2)−

(
n1∑
i=1

{A(T1[i])}

)
−

 n2∑
j=1

{A(T2[j])}

is a complete linear balanced octree.

Proof. T4 = (T1 ∪ T2) is a complete octree. Now,(n1∑
i=1

{A(T1[i])}

)
+

 n2∑
j=1

{A(T2[j])}

 =

(
n3∑

k=1

{A(T4[k])}

)

So, T3 =

(
T4 −

(
n3∑

k=1

{A(T4[k])}

))
is a complete linear octree.

Now, suppose that a node N ∈ T3 has a neighbor K ∈ T3 such that L(K) ≥
(L(N) + 2). It is obvious that exactly one of N and K must be present in T1 and
the other must be present in T2. Without loss of generality, assume that N ∈ T1

and K ∈ T2. Since T2 is complete, there exists at least one neighbor of K,L ∈ T2,
which overlaps N . Also, since T2 is balanced L(L) = L(K) or L(L) = (L(K)− 1)
or L(L) = (L(K) + 1). So, L(L) ≥ (L(N) + 1). Since L overlaps N and since
L(L) ≥ (L(N) + 1), L ∈ {D(N)}. Hence, N /∈ T3. This contradicts the initial
assumption. Therefore, T3 is also balanced.

3.5.3. Searching for neighbors. A leaf needs to be refined if and only if the
level of one of its neighbors is at least 2 levels finer than its own. In terms of a
search this presents us two options: search for coarser neighbors or search for finer
neighbors. It is much easier to search for coarser neighbors than it is to search for finer

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 15

Algorithm 6. Constructing a complete balanced subtree of an
octant, given one of its descendants (sequential)

Input: An octant, N, and one of its descendants, L.
Output: Complete balanced subtree, R.
Work: O(n log n), where n = len(R).
Storage: O(n), where n = len(R).

1. W ← L, T ← ∅, R← ∅
2. for l← Dmax to (L(N) + 1)
3. for each w ∈W
4. R← R + w + S(w)
5. T ← T +N (P(w), l − 1)
6. end for
7. W ← T, T ← ∅
8. end for
9. Sort(R)
10. RemoveDuplicates(R)
11. R← Linearise(R) (Algorithm 8)

Algorithm 7. Balancing a local block (sequential) - BalanceSubtree

Input: An octant, N, and a partial list of its descendants, L.
Output: Complete balanced subtree, R.
Work: O(n log n), where n = len(R).
Storage: O(n), where n = len(R).

1. W ← L, P ← ∅, R← ∅
2. for l← Dmax to (L(N) + 1)
3. Q← {x ∈W | L(x) = l}
4. Sort(Q)
5. T ← {x ∈ Q | S(x) /∈ T}
6. for each t ∈ T
7. R← R + t + S(t)
8. P ← P +N (P(t), l − 1)
9. end for
10. P ← P + {x ∈W | L(x) = l − 1}
11. W ← {x ∈W |L(x) 6= l − 1}
12. RemoveDuplicates(P)
13. W ←W + P, P ← ∅
14. end for
15. Sort(R)
16. R← Linearise(R) (Algorithm 8)

16 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Algorithm 8. Removing overlaps from a sorted list of octants
(sequential) - Linearise

Input: A sorted list of octants, W.
Output: R, an octree with no overlaps.
Work: O(n), where n = len(W).
Storage: O(n), where n = len(W).

1. for i← 1 to (len(W)− 1)
2. if (W [i] /∈ {A(W [i + 1])})
3. R← R + W [i]
4. end if
5. end for
6. R← R + W [len(W)]

Fig. 3.5. To find neighbors coarser than the current cell, we first select the finest cell at the
far corner. The far corner is the one that is not shared with any of the current cell’s siblings. The
neighbors of this corner cell are determined and used as the search keys. The search returns the
greatest cell lesser than or equal to the search key. The possible candidates in a complete linear
quadtree, as shown, are ancestors of the search key.

neighbors. If we consider the 2D case, only 3 neighbors coarser than the current cell
need to be searched for. However, the number of potential neighbors finer than the
cell is extremely large, (in 2D it is 2 · 2Dmax−l + 3, where l is the level of the current
quadrant), and therefore not practical to search. In addition the search strategy
depends on the way the octree is stored; the pointer based approach being more
popular [4, 33], but has the overhead that it has to be rebuilt every time octants are
communicated across processors. In the proposed approach the octree is stored as a
linear octree in which the octants are sorted globally in the ascending Morton order,
allowing us to search in O(log n).

In order to find neighbors coarser than the current cell, we use the approach
illustrated in Figure 3.5. First, the finest cell at the far corner (marked as ‘Search
Corner’ in Figure 3.5) is determined. This is the corner that this octant shares with
its parent. This is also the corner diagonally opposite to the corner common to all the

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 17

siblings of the current cell14. The neighbors (at the finest level) of this cell (N) are
then selected and used as the search keys. These are denoted by N s (N,Dmax). The
maximum lower bound15 for the given search key is determined by searching within
the complete linear octree. In a complete linear octree, the maximum lower bound
of a search key returns its finest ancestor. If the search result is at a level finer than
or equal to the current cell then it is guaranteed that no coarser neighbor can exist
in that direction. This idea can be extended to incomplete linear octrees (including
multiply connected domains). In this case, the result of a search is ignored if it is not
an ancestor of the search key.

3.5.4. Ripple propagation. A variant (Algorithm 9) of the prioritized ripple
propagation algorithm first proposed by Tu et al. [33], modified to work with linear
octrees, is used to balance the boundary leaves. The algorithm selects all leaves at
a given level (successively decreasing levels starting with the finest), and searches
for neighbors coarser than itself. A list of balancing descendants16 for neighbors
that violate the balance condition are stored. At the end of each level, any octant
that violated the balance condition is replaced by a complete linear subtree. This
subtree can be obtained either by using the sequential version of Algorithm 3 or by
using Algorithm 10, which is a variant of Algorithm 7. Both the algorithms perform
equally well.17

One difference with earlier versions of the ripple propagation algorithm is that our
version works with incomplete domains. In addition, earlier approaches [4, 33, 35] have
used pointer-based representations of the local octree, which incurs the additional cost
of constructing the pointer-based tree from the linear representation and also increases
the memory footprint of the octree as 9 additional pointers18 are required per octant.
The work and storage costs incurred for balancing using the proposed algorithm to
construct n balanced octants are O(n log n) and O(n), respectively. This is true
irrespective of the domain, including domains that are not simply connected.

3.5.5. Insulation against the ripple-effect. An interesting property of com-
plete linear octrees is that a boundary octant cannot be finer than its internal neigh-
bors19 (Figure 3.6(a)) [33]. So, if a node (at any level) is internally balanced then to
balance it with all its neighboring domains, it is sufficient to appropriately refine the
internal boundary leaves20. The interior leaves need not be refined any further. Since
the interior leaves are also balanced against all their neighbors, they will not force
any other octant to split. Hence, interior octants do not participate in the remaining
stages of balancing.

Observe that the phenomenon with interior octants described above is only an

14We do not need to search in the direction of the siblings.
15The greatest cell lesser than or equal to the search key is referred to as its maximum lower

bound.
16Balancing descendants are the minimum number of descendants that will balance against the

octant that performed the search.
17We indicate which algorithms are parallel and which are sequential. In our notation the sequen-

tial algorithms are sometimes invoked with a distributed object: it is implied with the input is the
local instance of the distributed object.

18One pointer to the parent and eight pointers to its children.
19A neighbor of a boundary octant that does not touch the boundary is referred to as an internal

neighbor of the boundary octant.
20We refer to the descendants of a node that touch its boundary from the inside as its internal

boundary leaves.

18 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Algorithm 9. Ripple propagation on incomplete domains (sequential) -
Ripple

Input: L, a sorted incomplete linear octree.
Output: W, a balanced incomplete linear octree.
Work: O(n log n), where n = len(L).
Storage: O(n), where n = len(L).

1. W ← L
2. for l← Dmax to (L(N) + 1)
3. for each w ∈W
4. if L(w) = l
5. K ← search keys(w) (Section 3.5.3)
6. (B, J)← maximum lower bound (K, W)

(J is the index of B in W)
7. for each (b, j) ∈ (B, J) | l > (L(b) + 1) & b ∈ A(K)
8. T [j]← T [j] + ({N s (w, (l − 1))} ∩ {A(K)})
9. end for
10. end if
11. end for
12. for i← 1 to len(W)
13. if T [i] 6= ∅
14. R← R+ CompleteSubtree(W [i], T [i]) (Algorithm 10)
15. else
16. R← R + W [i]
17. end if
18. end for
19. W ← R, T,R← ∅
20. end for

Internal
Octant

Octant
Boundary

(a)

Neighbours of N

N

at level L(N)

(b)

Fig. 3.6. (a) A boundary octant cannot be finer than its internal neighbors, and (b) an
illustration of an insulation layer around octant N. No octant outside this layer of insulation can
force a split on N.

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 19

Algorithm 10. Completing a local block (sequential) -
CompleteSubtree

Input: An octant, N, and a partial list of its descendants, L.
Output: Complete subtree, R.
Work: O(n log n), where n = len(R).
Storage: O(n), where n = len(R).

1. W ← L
2. for l← Dmax to L(N) + 1
3. Q← {x ∈W | L(x) = l}
4. Sort(Q)
5. T ← {x ∈ Q | S(x) /∈ T}
6. for each t ∈ T
7. R← R + t + S(t)
8. P ← P + S (P(t))
9. end for
10. P ← P + {x ∈W | L(x) = l − 1}
11. W ← {x ∈W | L(x) 6= l − 1}
12. RemoveDuplicates(P)
13. W ←W + P, P ← ∅
14. end for
15. Sort(R)
16. R← Linearise(R) (Algorithm 8)

example of a more general property:
Definition 2. For any octant, N, in the octree, we refer to the union of the

domains occupied by its potential neighbor’s at the same level as N (N (N,L(N))) as
the insulation layer around octant N . This will be denoted by I(N).

Property 1. No octant outside the insulation layer around octant N can force
N to split (Figure 3.6(b)).

This property allows us to decouple the problem of balancing and allows us to
work on only a subset of nodes in the octree and yet ensure that the entire octree is
balanced.

3.5.6. Balancing inter-processor boundaries. After the intra-processor, and
inter-block boundaries are balanced, the inter-processor boundaries need to be bal-
anced. Unlike the internal leaves (Section 3.5.5), the octants on the boundary do not
have any insulation against the ripple-effect. Moreover, a ripple can propagate across
multiple processors. Most approaches to perform this balance have been based on
extensions of the sequential ripple algorithm to a parallel case by performing parallel
searches. In an earlier attempt we developed efficient parallel search strategies allow-
ing us to extend our sequential balancing algorithms to the parallel case. Although
this approach works well for small problems on a small number of processors, it shows
suboptimal isogranular scalability as has been seen with other similar approaches to
the problem [35]. The main reason is iterative communication. Although there are
many examples of scalable parallel algorithms that involve iterative communication,

20 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Fig. 3.7. A coarse quadtree illustrating inter and intra processor boundaries. First, every
processor balances each of its local blocks. Then, each processor balances the cells on its intra-
processor boundaries. The octants that lie on inter-processor boundaries are then communicated to
the respective processors and each processor balances the combined list of local and remote octants.

Fig. 3.8. Communication for inter-processor balancing is done in two stages: First, every
octant on the inter-processor boundary is communicated to processors that overlap with its insulation
layer. Next, all the local inter-processor boundary octants that lie in the insulation layer of a remote
octant received from another processor are communicated to that processor.

they overlap communication with computation to reduce the overhead associated with
communication [13, 29]. Currently, there is no method that overlaps communication
with computation for the balancing problem. Thus, any algorithm that uses iterative
parallel searches for balancing octrees will be have high communication costs.

In order to avoid parallel searches, the problem of balancing is decoupled. In
other words, each processor works independently without iterative communication.
To achieve this, two properties are used: (1) the only octants that need to be refined
after the local balancing stage are the ones that lie on inter-processor boundaries
and (2) an artificial insulation layer (Property 1) for the boundary octants can be
constructed with little communication overhead (Section 3.5.7). The construction of
this insulation layer is done in two stages (Figure 3.8): First, every local octant on
the inter-processor boundary (Figure 3.7) is communicated to processors that overlap
with its insulation layer. These processors can be determined by comparing the local
boundary octants against the global coarse blocks. In the second stage of communi-
cation, all the local inter-processor boundary octants that overlap with the insulation
layer of a remote octant received from another processor are communicated to that
processor. Octants that were communicated in the first stage are not communicated
to the same processor again. For simplicity, Algorithm 11 only describes a näıve im-
plementation for determining teh octants that need to be communicated at this stage.
This, however, can be performed much more efficiently using the results of Lemma

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 21

3.2 and Lemma 3.3. After this two-stage communication, each processor balances the
union of the local and remote boundary octants using the ripple propagation based
method (Section 3.5.4). At the end only the octants spanning the original domain
spanned by the processors are retained. Although there is some redundancy in the
work, it is compensated by the fact that we avoid iterative communications. Section
3.5.7 gives a detailed analysis of the communication cost involved.

Lemma 3.2. If octants a and b > a do not overlap, then there can be no octant
c > b that overlaps a.

Proof. If a and c overlap, then either a ∈ {A(c)} or a ∈ {D(c)}. Since c > a,
the latter is a direct violation of Property 4 and hence is impossible. Hence, assume
that c ∈ {D(a)}. By Property 9, c ≤ DLD(a). Property 10 would then imply that
b ∈ {D(a)}. Property 5 would then imply that a and b must overlap. Since, this is
not true our initial assumption must be wrong. Hence, a and c can not overlap.

Lemma 3.3. Let N be an inter-processor boundary octant belonging to processor
q and let it be sent to processor p during the first stage of communication. If all
elements in I(N) overlap some octant in q or p, then the inter-processor boundary
octants on p that overlap with some element in I(N) and that were not communicated
to q in the first stage, will not force a split on N .

Proof. Note that at this stage both p and q are internally balanced. Thus, N
will be forced to split if and only if there is an inter-processor boundary octant, a,
on the p touching an octant, b, on q such that L(a) > (L(b) + 1) and when b is split
it starts a cascade of splits on octants in q that in turn force N to split. Since every
inter-processor boundary octant is sent to all its adjacent processors, a must have
been sent to q during the first stage of communication.

The keys steps involved in parallel balancing are summarized in Algorithm 11.

3.5.7. Communication costs for parallel balancing. Here, we compare the
communication costs associated with the two approaches (upfront communication
versus iterative communication). Let us assume that prior to parallel balancing there
are a total of N octants in the global octree. The octants that lie on the inter-processor
boundary can be classified based on the degree of the face21 that they share with the
inter-processor boundary. We use Nk to represent the number of octants that touch
any m-dimensional face (m ∈ [0, k]) of the inter-processor boundary.

Note that all vertex boundary octants are also edge and face boundaries and
that all edge boundary octants are also face boundary octants. Therefore we have,
N ≥ N2 ≥ N1 ≥ N0, and for N � np, we have N � N2 � N1 � N0.

Although it is theoretically possible that an insulation layer of some octant en-
closes the domains controlled by multiple processors, it is unlikely for dense octrees.
Hence, it is reasonable to assume that in the first stage the octants are only commu-
nicated via near-neighbor point-to-point operations. Under this assumption, the total
number of octants of a d-tree that need to be communicated in the first stage of the
proposed approach is given by

Nu =
d∑

k=1

2d−kNk−1. (3.1)

Consider the example shown in Figure 3.9. The domain on the left is partitioned
into two regions, and in this case all boundary octants need to be transmitted to

21A corner is a 0-degree face, an edge is a 1-degree face and a face is a 2-degree face.

22 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Algorithm 11. Balancing complete linear octrees (parallel)

Input: A distributed sorted complete linear octree, L.
Output: A distributed complete balanced linear octree, R.
Work: O(n log n), where n = len(L).
Storage: O(n), where n = len(L).
Time: Refer to Section 3.5.7.

1. B ← BlockPartition(L) (Algorithm 4)
2. C ← BalanceSubtree (B, L) (Algorithm 7.)
3. D ← {x ∈ C | ∃ z ∈ {N (x)} | {{{z, {A(z)}} − {A(x)}} ∩B} 6= ∅}

(intra-processor boundary octants)
4. S ← Ripple(D) (Algorithm 9)
5. F ← Linearise(C ∪ S)
6. G← {x ∈ F | ∃ z ∈ {N (x)} | {{z, {A(z)}} ∩B} = ∅}

(inter-processor boundary octants)
7. for each g ∈ G
8. for each b ∈ Bglobal −B
9. if {b ∩ I(g)} 6= ∅
10. Send(g, rank(b))
11. end if
12. end for
13. end for
14. T ← Receive()
15. for each g ∈ G
16. for each t ∈ T
17. if {g ∩ I(t)} 6= ∅
18. if g was not sent to rank(t) in Step 10
19. Send(g, rank(t))
20. end if
21. end if
22. end for
23. end for
24. K ← Receive()
25. H ← Ripple(G ∪ T ∪ K)
26. R← {x ∈ {H ∪ F} | {B ∩ {x, {A(x)}}} 6= ∅}
27. R← Linearise(R) (Algorithm 8)

exactly one other processor. The addition of the additional boundary, in the figure on
the right, does not affect most boundary nodes, except for the boundary octants that
share a corner, i.e., a 0-dimensional face with the inter processor boundaries. These
octants need to be sent to an additional 2 processors, and that is the reason we have
a factor of 2d−k in Equation 3.1. For the case of octrees, additional communication
is incurred because of edge boundaries as well as vertex boundaries. Edge bound-
ary octants need to be communicated to 2 additional processors whereas the vertex
boundary octants need to be communicated to 4 additional processors (7 processors
in all).

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 23

Fig. 3.9. Cells that lie on the inter-processor boundaries. The figure on the left shows an
inter-processor boundary involving 2 processors and the figure on the right shows an inter-processor
boundary involving 4 processors.

Now, we analyze the cost associated with the second communication step in our
algorithm. Consider the example shown in Figure 3.8. Note that all the immediate
neighbors of the octant under consideration (Octant on processor 1 in the figure),
were communicated during the first stage. The octants that lie in the insulation zone
of this octant and that were not communicated in the first stage are those that lie in
a direction normal to the inter-processor boundary. However, most octants that lie
in a direction normal to the inter-processor boundary are internal octants on other
processors. As shown in Figure 3.8, the only octants that lie in a direction normal
to one inter-processor boundary and are also tangential to another inter-processor
boundary are the ones that lie in the shadow of some edge or corner boundary octant.
Therefore, we only communicate O(N1+N0) octants during this stage. Since N � np

and N2 � N1 � N0 for most practical applications, the cost for this communication
step can be ignored.

The minimum number of search keys that need to be communicated in a search
based approach is given by

Ns =
d∑

k=1

2k−1Nk−1. (3.2)

Again considering the example shown in Figure 3.9, each boundary octant in the
figure shown on the left, generates 3 search keys, out of which one lies on the same
processor. The other two need to be communicated to the other processor. The addi-
tion of the extra boundary, in the figure on the right, does not affect most boundary
nodes, except for the boundary octants that share a corner, i.e., a 0-dimensional face
with the inter processor boundaries. These octants need to be sent to an additional
processor, and that is the reason we have a factor of 2k−1 in Equation 3.2. It is
important to observe the difference between the communication estimates for upfront
communication, 3.1, with that of the search based approach, 3.2. For large octrees,

Nu ≈ N2,

while,

Ns ≈ 4N2.

24 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Note, that in arriving at the communication estimate for the search based ap-
proaches, we have not accounted for the additional octants created during the inter-
processor balancing. In addition, iterative search based approaches are further af-
fected by communication lag and synchronization. Our approach in contrast requires
no subsequent communication.

In conclusion, the communication cost involved in the proposed approach is lower
than that of search based approaches22.

4. Results. The performance of the proposed algorithms is evaluated by a num-
ber of numerical experiments, including fixed-size and isogranular scalabilty analysis.
The algorithms were implemented in C++ using the MPI library. A variant of the
sample sort algorithm was used to sort the points and the octants, which incorporates
a parallel bitonic sort to sort the sample elements as suggested in [13]. PETSc [2]
was used for profiling the code. All tests were performed on the Pittsburgh Super-
computing Center’s TCS-1 terascale computing HP AlphaServer Cluster comprising
of 750 SMP ES45 nodes. Each node is equipped with four Alpha EV-68 processors
at 1 GHz and 4 GB of memory. The peak performance is approximately 6 Tflops,
and the peak performance for the top-500 LINPACK benchmark is approximately 4
Tflops. The nodes are connected by the Quadrics interconnect, which delivers over
500 MB/s of message-passing bandwidth per node and has a bisection bandwidth of
187 GB/s. In our tests we have used 4 processors per node, wherever possible.

First, results from an experiment to compare different strategies for the local
balancing stage is presented. This highlights the advantages of using the two-stage
approach over existing approaches. Following this, results from the fixed-size and
isogranular scalability analysis are presented.

4.1. Test Data. Point data of different sizes were generated for three different
distributions; Gaussian, Log-normal and Regular. The regular distribution corre-
sponds to a set of points uniformly distributed such that they are regularly spaced.
Datasets were generated for all three distributions of increasing sizes that result in a
balanced octree with octants ranging from 106(1M) to 109(1B). The fixed size scal-
ability analysis was performed by selecting the 1M, 32M and 128M Gaussian point
distributions to represent small, medium and large problems. Since the input sizes
for different stages of the algorithm vary, we provide the input and output sizes for
different stages in table 4.1. Since the regularly spaced points produce octrees that
are inherently balanced, these datasets serve to estimate the communication costs
associated with the parallel balancing algorithm.

4.2. Comparison between different strategies for the local balancing
stage. In order to assess the advantages of using a two-stage approach for local
balancing over existing methods, we compared the runtimes on different problem
sizes. Since the comparison was for different strategies for local balancing, it does
not involve any communication and hence was evaluated on a quad dual-core shared
memory machine. We compared our two-stage approach, discussed in Section 3.5.1,
with two other approaches; the first approach is the prioritized ripple propagation
idea applied on the entire local domain [35], and the second approach is to use ripple
propagation in 2 stages, where the local domain is first split into coarser blocks23

and ripple propagation is applied first to each local block and then repeated on the

22We are assuming that both the approaches use the same partitioning of octants.
23The same partitioning strategy as used in our two-stage algorithm was used to obtain the coarser

blocks.

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 25

Gaussian log-Normal Regular
Problem Points Unbalanced Balanced Points Unbalanced Balanced Points
size Octants Octants Octants Octants Octants
1M 180K 607K 995.4K 180K 607K 987.5K 405.2K 994.9K
2M 361K 1211K 2000.5K 361K 1214K 2016.9K 2097.2K 2097.2K
4M 720K 2434K 3973.9K 720K 2434K 3958.5K 2.4M 4.06M
8M 1466K 4912K 8.0M 1466K 4920K 8.1M 3.24M 7.96M
16M 2886K 9686K 16M 2886K 9712K 16M 16.78M 16.78M
32M 5.8M 19.6M 31.9M 5.8M 19.6M 31.8M 19.25M 32.53M
64M 11.7M 39.3M 64.4M 11.7M 39.3M 64.7M 25.93M 63.67M
128M 23.5M 79.3M 130.6M 23.5M 79.4M 130.1M 134.22M 134.22M
256M 47M 158.6M 256.8M 47M 158.3M 256.4M 153.99M 260.24M
512M 94M 315.1M 516.9M 94M 315.5M 520.8M 168.20M 337.66M
1B 164.5M 553.6M 914.9M 164.5M 555.2M 912.2M 1.07B 1.07B

Table 4.1
Input and output sizes for the construction and balancing algorithms for the scalability experi-

ments on Gaussian, Log-Normal, and Regular point distributions. Note that Regular point distribu-
tions are inherently balanced, and therefore the number of octants is only reported once.

(a) (b)

(c) (d)

Fig. 4.1. Comparison of three different approaches for balancing linear octrees (a) for a Gaus-
sian distribution of 1M octants, (b) for a Gaussian distribution of 4M octants, (c) for a Gaussian
distribution of 8M octants, and (d) for a Gaussian distribution of 16M octants.

boundaries of all local blocks. Fixed size scalability analysis was performed to compare
the above mentioned three approaches with problem sizes of 1, 4, 8, and 16 million
points. The results are shown in in Figure 4.1. All three approaches demonstrate
good fixed size scalability, but the two-stage approach demonstrate better absolute
runtime.

4.3. Scalability analysis. In this section we provide experimental evidence on
the good scalability of our algorithms. We present both fixed-size and isogranular

26 H. SUNDAR, R.S. SAMPATH AND G. BIROS

scalability analysis. Fixed size scalability was performed for different problem sizes
to analyze the improvement in performance when the problem size is kept constant
and the number of processors are increased. Fixed size scalability allows us to deter-
mine the problem sizes for which speedup can be expected by increasing the processor
count. Isogranular scalability analysis is performed by tracking the execution time
while increasing the problem size and the number of processors proportionately. By
maintaining the problem size per processor (relatively) constant as the number of pro-
cessors is increased, we can identify communication problems related to the size and
frequency of the messages as well as global reductions and problems with algorithmic
scalability.

One of the important components in our algorithms is the sample sort routine,
which has a complexity of O(N

np
log N

np
+ n2

p log np) if the samples are sorted using
a serial sort. This causes problems when N = O(n2

p) as the serial sort begins to
dominate and results in poor scalability. For example, at np = 1024 we would require
N > 106 to obtain good scalability. This presents some problems as it becomes
difficult to fit arbitrarily large problems on a given processor. Using the parallel
bitonic sort to sort the samples [13] reduces the complexity to O(N

np
log N

np
+np log np).

Isogranular scalability analysis was performed for all three distributions with an
output size of roughly 1M octants per processor, for processor counts ranging from
1 to 1024. In all cases the tests were performed with a maximum of one point per
octant. This resulted in octrees with over 1 billion octants in some cases. Since the
regularly spaced distribution is inherently balanced, the input point sizes were much
greater for this case than those for Gaussian and Log-normal distributions. Both the
Gaussian and Log-normal distributions are imbalanced and it can be seen in Table
4.1 that on an average the number of unbalanced octants is 3 times the number of
input points, and that the number of octants doubles as a result of balancing. For the
regularly spaced distribution, we observe that in some cases the number of octants is
the same as the number of input points (2M, 16M, 128M and 1B). These are special
cases where the resulting grid is a regular grid .

Wall-clock timings, speedup and efficiency for the isogranular analysis for the
three distributions are shown in Figures 4.2, 4.3, and 4.4. The isogranular analysis
for the regularly spaced distribution allows us to estimate the overhead involved in
communication, partitioning and in balancing the local blocks using Algorithm 7.
The ripple propagation algorithm does not do any work in this experiment. The
plots demonstrate the good isogranular scalability of the algorithm. We achieve near
optimal isogranular scalability for all three distributions (50s per 106 octants per
processor for the Gaussian and Log-normal distributions and 25s for the regularly
spaced distribution.).

Fixed size scalability tests were also performed for three problem set sizes, small
(1 million points), medium (32 million points) and large (128 million points), for the
Gaussian distribution. These results are plotted in Figures 4.5, 4.6 and 4.7.

5. Conclusions. We have presented two new parallel algorithms for construct-
ing and balancing large linear octrees on distributed memory machines. We have
also tested MPI-based scalable parallel implementations for both the algorithms. Our
algorithms have several important features:

• Experiments on three different types of input distributions demonstrate that
the algorithms are insensitive to the underlying data distribution.
• Our algorithms avoid iterative communications and thus are able to achieve

low absolute runtime and good scalability.

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 27

Construction

Internal Balance

Boundary Balance

Communication for Balance

Fig. 4.2. Isogranular scalability for Gaussian distribution of 1M octants per processor. From left
to right, the bars indicate the time taken for the different components of our algorithms for increasing
processor counts. The bar for each processor is partitioned into 4 sections. From top to bottom,
the sections represent the time taken for (1) communication (including related pre-processing and
post-processing) during balance refinement (Algorithm 11), (2) balancing across intra and inter
processor boundaries (Algorithm 9), (3) balancing the blocks (Algorithm 7) and (4) construction
from points (Algorithm 1).

• The experiments for comparing the performance of different algorithms for
the local balancing stage demonstrated that the one proposed in this paper
has a significantly lower running time than the others.
• We demonstrated scalability up to 1024 processors: we were able to construct

and balance octrees with over 1 billion octants in less than a minute.

We need to consider the following factors to improve the performance of the
proposed algorithms. In order to minimize communication costs, it is desirable to
have as large coarse blocks as possible since the communication cost is proportional
to the area of the inter-processor boundaries. However, too coarse blocks will increase
the work for the local block balancing stage (Section 3.5.2). If additional local splits
are introduced, then the intra-block boundaries increase causing the work load for
the first ripple balance to increase. The local balancing step of the algorithm can be
made more efficient by performing the local balancing recursively by estimating the
correct size of the block that can be balanced by the search-free approach. Such an
approach should be based on low-level architecture details, like the cache size.

Acknowledgments. The authors thank Santi Swaroop Adavani and Shravan
Veerapaneni of University of Pennsylvania for providing us with an implementation
of the parallel Sample Sort algorithm.

28 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Construction

Internal Balance

Boundary Balance

Communication for Balance

Fig. 4.3. Isogranular scalability for Log-normal distribution of 1M octants per processor. From
left to right, the bars indicate the time taken for the different components of our algorithms for
increasing processor counts. The bar for each processor is partitioned into 4 sections. From top to
bottom, the sections represent the time taken for (1) communication (including related pre-processing
and post-processing) during balance refinement (Algorithm 11), (2) balancing across intra and inter
processor boundaries (Algorithm 9), (3) balancing the blocks (Algorithm 7) and (4) construction
from points (Algorithm 1).

REFERENCES

[1] D. Ayala, P. Brunet, R. Juan, and I. Navazo, Object representation by means of nonminimal
division quadtrees and octrees, ACM Trans. Graph., 4 (1985), pp. 41–59.

[2] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,
B. F. Smith, and H. Zhang, PETSc Web page, 2001. http://www.mcs.anl.gov/petsc.

[3] R. Becker and M. Braack, Multigrid techniques for finite elements on locally refined meshes,
Numerical Linear Algebra with applications, 7 (2000), pp. 363–379.

[4] M. W. Bern, D. Eppstein, and S.-H. Teng, Parallel construction of quadtrees and quality tri-
angulations, International Journal of Computational Geometry and Applications, 9 (1999),
pp. 517–532.

[5] G. Berti, Image-based unstructured 3-d mesh generation for medical application, in European
Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Fin-
land, 2004.

[6] P. Brunet and I. Navazo, Solid representation and operation using extended octrees, ACM
Trans. Graph., 9 (1990), pp. 170–197.

[7] P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and J. D. Teresco,
Dynamic octree load balancing using space-filling curves, Tech. Report CS-03-01, Williams
College Department of Computer Science, 2003.

[8] T. Corman, C. Leiserson, and R. Rivest, Introduction to Algorithms, MIT Press, 1990.

[9] R. A. Finkel and J. L. Bentley, Quad trees: A data structure for retrieval on composite
keys, Acta Inf., 4 (1974), pp. 1–9.

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 29

Construction

Internal Balance

Boundary Balance

Communication for Balance

Fig. 4.4. Isogranular scalability for uniformly spaced points with 1M octants per processor.
From left to right, the bars indicate the time taken for the different components of our algorithms
for increasing processor counts. The bar for each processor is partitioned into 4 sections. From
top to bottom, the sections represent the time taken for (1) communication (including related pre-
processing and post-processing) during balance refinement (Algorithm 11), (2) balancing across
intra and inter processor boundaries (Algorithm 9), (3) balancing the blocks (Algorithm 7) and
(4) construction from points (Algorithm 1). While both the input and output grain sizes remain
almost constant for the Gaussian and LogNormal distributions, only the output grain size remains
constant for the Uniform distribution. Hence, the trend seen in this study is a little different from
those for the Gaussian and LogNormal distributions.

[10] L. Freitag and R. Loy, Adaptive, multiresolution visualization of large data sets using a
distributed memory octree, in ACM/IEEE 1999 Conference on Supercomputing, 13-18 Nov.
1999.

[11] H. Fuchs, G. D. Abram, and E. D. Grant, Near real-time shaded display of rigid objects,
in SIGGRAPH ’83: Proceedings of the 10th annual conference on Computer graphics and
interactive techniques, New York, NY, USA, 1983, ACM Press, pp. 65–72.

[12] H. Fuchs, Z. M. Kedem, and B. F. Naylor, On visible surface generation by a priori tree
structures, in SIGGRAPH ’80: Proceedings of the 7th annual conference on Computer
graphics and interactive techniques, New York, NY, USA, 1980, ACM Press, pp. 124–133.

[13] A. Grama, A. Gupta, G. Karypis, and V. Kumar, An Introduction to Parallel Computing:
Design and Analysis of Algorithms, Addison Wesley, second ed., 2003.

[14] D. M. Greaves and A. G. L. Borthwick, Hierarchical tree-based finite element mesh genera-
tion, International Journal for Numerical Methods in Engineering, 45 (1999), pp. 447–471.

[15] L. Greengard and W. Gropp, A parallel version of the fast multipole method-invited talk, in
Proceedings of the Third SIAM Conference on Parallel Processing for Scientific Computing,
Philadelphia, PA, USA, 1989, Society for Industrial and Applied Mathematics, pp. 213–222.

[16] M. Griebel and G. Zumbusch, Parallel multigrid in an adaptive PDE solver based on hashing,
in Parallel Computing: Fundamentals, Applications and New Directions, Proceedings of
the Conference ParCo’97, 19-22 September 1997, Bonn, Germany, E. H. D’Hollander, G. R.
Joubert, F. J. Peters, and U. Trottenberg, eds., vol. 12, Amsterdam, 1998, Elsevier, North-
Holland, pp. 589–600.

30 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Construction

Sort - Construction

BlockPartition

Balance

Commn - Balance

Internal Balance

Boundary Balance

Fig. 4.5. Fixed size scalability for Gaussian distribution of 1M octants. From left to right, the
bars indicate the time taken for the different components of our algorithms for increasing processor
counts. The bar for each processor is partitioned into 2 columns, which are further subdivided. The
left column is subdivided into 2 sections and the right column is subdivided into 6 sections. The
top and bottom sections of the left column represent the total time taken for (1) balance refinement
(Algorithm 11) and (2) construction (Algorithm 1), respectively. From top to bottom, the sections
of the right column represent the time taken for (1) balancing across intra and inter processor
boundaries (Algorithm 9), (2) balancing the blocks (Algorithm 7), (3) communication (including
related pre-processing and post-processing) during balance refinement, (4) local processing during
construction, (5) BlockPartition and (6) Sample Sort.

[17] B. Hariharan, S. Aluru, and B. Shanker, A scalable parallel fast multipole method for
analysis of scattering from perfect electrically conducting surfaces, in Supercomputing ’02:
Proceedings of the 2002 ACM/IEEE conference on Supercomputing, Los Alamitos, CA,
USA, 2002, IEEE Computer Society Press, pp. 1–17.

[18] B. V. Herzen and A. H. Barr, Accurate triangulations of deformed, intersecting surfaces,
in SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer graphics and
interactive techniques, New York, NY, USA, 1987, ACM Press, pp. 103–110.

[19] E. Kim, J. Bielak, O. Ghattas, and J. Wang, Octree-based finite element method for large-
scale earthquake ground motion modeling in heterogeneous basins, AGU Fall Meeting Ab-
stracts, (2002), pp. B1221+.

[20] H. MAGISTRALE, S. DAY, R. CLAYTON, and R. GRAVES, The scec southern california
reference three-dimensional seismic velocity model version 2, Bulletin of the Seismological
Soceity of America, (2000).

[21] D. Meagher, Geometric modeling using octree encoding, Computer Graphics and Image Pro-
cessing, 19 (1982), pp. 129–147.

[22] D. Moore, The cost of balancing generalized quadtrees., in Symposium on Solid Modeling and
Applications, 1995, pp. 305–312.

[23] S. Popinet, Gerris: a tree-based adaptive solver for the incompressible euler equations in
complex geometries, Journal of Computational Physics, 190 (20 September 2003), pp. 572–
600(29).

[24] R. Schneiders, An algorithm for the generation of hexahedral element meshes based on an
octree technique, 1997.

[25] R. Schneiders, R. Schindler, and F. Weiler, Octree-based generation of hexahedral element
meshes, 1996.

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 31

Construction

Sort - Construction

BlockPartition

Balance

Commn - Balance

Internal Balance

Boundary Balance

Fig. 4.6. Fixed size scalability for Gaussian distribution of 32M octants. From left to right, the
bars indicate the time taken for the different components of our algorithms for increasing processor
counts. The bar for each processor is partitioned into 2 columns, which are further subdivided. The
left column is subdivided into 2 sections and the right column is subdivided into 6 sections. The
top and bottom sections of the left column represent the total time taken for (1) balance refinement
(Algorithm 11) and (2) construction (Algorithm 1), respectively. From top to bottom, the sections
of the right column represent the time taken for (1) balancing across intra and inter processor
boundaries (Algorithm 9), (2) balancing the blocks (Algorithm 7), (3) communication (including
related pre-processing and post-processing) during balance refinement, (4) local processing during
construction, (5) BlockPartition and (6) Sample Sort.

[26] R. Schumaker, P. Brand, M. Gilliland, and W. Sharp, Study for applying computer-
generated images to visual simulation, U.S. Air Force Human Resources Laboratory, Tech-
nical Report, 69 (1969).

[27] M. Shephard and M. Georges, Automatic three-dimensional mesh generation by the finite
octree technique, International Journal for Numerical Methods in Engineering, 26 (1991),
pp. 709–749.

[28] J. R. Shewchuk, Tetrahedral mesh generation by delaunay refinement, in Proceedings of
the Fourteenth Annual Symposium on Computational Geometry, Minneapolis, Minnesota,
USA, June 1998, Association for Computing Machinery, pp. 86–95.

[29] A. K. Somani and A. M. Sansano, Minimizing overhead in parallel algorithms through over-
lapping communication/computation, tech. report, Institute for Computer Applications in
Science and Engineering (ICASE), 1997.

[30] K. Strasters and J. Gerbrands, 3-dimensional image segmentation using a split, merge and
group-approach, Pattern Recognition Letters, 12 (1991), pp. 307–325.

[31] S.-H. Teng, Provably good partitioning and load balancing algorithms for parallel adaptive
n-body simulation, SIAM Journal on Scientific Computing, 19 (1998).

[32] H. Tropf and H. Herzog, Multidimensional range search in dynamically balanced trees, Ange-
wandte Informatik, 2 (1981), pp. 71–77.

[33] T. Tu and D. R. O’Hallaron, Balance refinement of massive linear octree datasets, CMU
Technical Report, CMU-CS-04 (2004).

[34] , Extracting hexahedral mesh structures from balanced linear octrees, in 13th International
Meshing Roundtable, Williamsburg, VA, Sandia National Laboratories, September 19-22
2004, pp. 191–200.

[35] T. Tu, D. R. O’Hallaron, and O. Ghattas, Scalable parallel octree meshing for terascale ap-
plications, in SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing,
Washington, DC, USA, 2005, IEEE Computer Society, p. 4.

32 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Construction

Sort - Construction

BlockPartition

Balance

Commn - Balance

Internal Balance

Boundary Balance

Fig. 4.7. Fixed size scalability for Gaussian distribution of 128M octants. From left to right, the
bars indicate the time taken for the different components of our algorithms for increasing processor
counts. The bar for each processor is partitioned into 2 columns, which are further subdivided. The
left column is subdivided into 2 sections and the right column is subdivided into 6 sections. The
top and bottom sections of the left column represent the total time taken for (1) balance refinement
(Algorithm 11) and (2) construction (Algorithm 1), respectively. From top to bottom, the sections
of the right column represent the time taken for (1) balancing across intra and inter processor
boundaries (Algorithm 9), (2) balancing the blocks (Algorithm 7), (3) communication (including
related pre-processing and post-processing) during balance refinement, (4) local processing during
construction, (5) BlockPartition and (6) Sample Sort.

[36] M. S. Warren and J. K. Salmon, Astrophysical n-body simulations using hierarchical tree
data structures, in Supercomputing ’92: Proceedings of the 1992 ACM/IEEE conference
on Supercomputing, Los Alamitos, CA, USA, 1992, IEEE Computer Society Press, pp. 570–
576.

[37] M. S. Warren and J. K. Salmon, A parallel hashed oct-tree n-body algorithm, in Proceedings
of Supercomputing ’93, 31 March 1993.

[38] L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast multipole algorithm in
two and three dimensions, J. Comput. Phys., 196 (2004), pp. 591–626.

[39] L. Ying, G. Biros, D. Zorin, and H. Langston, A new parallel kernel-independent fast multi-
pole method, in SC ’03: Proceedings of the 2003 ACM/IEEE conference on Supercomputing,
Washington, DC, USA, 2003, IEEE Computer Society, p. 14.

Appendix A. Properties of Morton encoding.
Property 2. Sorting all the leaves in the ascending order of their Morton ids is

identical to a preorder traversal of the leaves of the octree. If one connects the centers
of the leaves in this order, one can observe a Z-pattern in the Cartesian space. The
space-filling Z-order curve has the property that spatially nearby octants tend to be
clustered together. The octants in Figures 2.1(b) and 2.1(c) are all labeled according
to this order. Depending on the order of interleaving the coordinates, different Z-order
curves are obtained. The two possible Z-curves in 2-D are shown in the Figure A.1.
Similarly, in 3-D six different types of Morton ordering are possible.

Property 3. Given three octants, a < b < c and c /∈ {D(b)}:

a < d < c, ∀d ∈ {D(b)}.

CONSTRUCTING AND BALANCING LARGE LINEAR OCTREES 33

Type-1 Type-2
X

Y

X

Y

Fig. A.1. Two types of z-ordering in quadtrees.

Property 4. The Morton id of any node is less than those of its descendants.
Property 5. Two distinct octants overlap if and only if one is an ancestor of

the other.
Property 6. The Morton id of any node and of its first child24 are consecutive.

It follows from Property 4 that the first child is also the child with the least Morton
id.

Property 7. The first descendant at level l, denoted by FD (N, l), of any node N
is the descendant at level l with the least Morton id. This can be arrived at by following
the first child at every level starting from N . FD (N,Dmax) is also the anchor of N
and is also referred to as the deepest first descendant, denoted by DFD(N), of node
N .

Property 8. The range (N,DFD(N)] only contains the first descendants of N
at different levels and hence there can be no more than one leaf in this range in the
entire linear octree.

Property 9. The last descendant at level l, denoted by LD (N, l), of any node
N is the descendant at level l with the greatest Morton id. This can be arrived at by
following the last child25 at every level starting from N . LD (N,Dmax) is also referred
to as the deepest last descendant, denoted by DLD(N), of node N .

Property 10. Every octant in the range (N,DLD(N)] is a descendant of N .

Appendix B. Multicomponent Morton Representation. Every Morton id
is a set of 4 entities: The three co-ordinates of the anchor of the octant and the level
of the octant. We have implemented the node as a C++ class, which contains these 4
entities as its member data. To use this set as a locational code for octants, we define
two primary binary logical operations on it: a) Comparing if 2 ids are equal and b)
Comparing if one id is lesser than the other.

Two ids are equal if and only if all the 4 entities are respectively equal. If two ids
have the same anchor then the one at a coarser level has a lesser Morton id. If the
anchors are different, then we can use Algorithm 12 to determine the lesser id. The Z-
ordering produced by this operator is identical to that produced by the scalar Morton
ids described in section 2.1. The other logical operations can be readily derived from
these two operations.

Appendix C. Analysis of the Block Partitioning Algorithm. Assume
that the input to the partitioning algorithm is a sorted distributed list of N octants.
Then, we can guarantee coarsening of the input if there are more than 8 octants26 per

24the child that has the same anchor as the parent
25child with the greatest Morton id
262d cells for a d-tree.

34 H. SUNDAR, R.S. SAMPATH AND G. BIROS

Algorithm 12. Finding the lesser of two Morton ids (sequential)

Input: Two Morton ids, A and B with different anchors.
Output: R, the lesser of the two Morton ids.

1. Xi ← (Ai ⊕Bi), i ∈ {x, y, z}
2. e← arg max

i
(log2(Xi))

3. if Ae < Be

R← A
4. else

R← B
5. end if

processor. The minimum number of octants on any processor, nmin, can be expressed
in terms of N and the imbalance factor27, c, as follows:

nmin =
N

1 + c(np − 1)
.

This implies that the coarsening algorithm will coarsen the octree if,

nmin =
N

1 + c(np − 1)
> 2d,

=⇒ N > 2d(1 + c(np − 1)).

The total number of blocks created by our coarsening algorithm is O(p). Specif-
ically, the total number of blocks produced by the coarsening algorithm, Nblocks,
satisfies:

p ≤ Nblocks < 2dp.

If the input is sorted and if c ≈ 1, then the communication cost for this partition
is O(N

np
).

Appendix D. Special case during construction. We can not always guaran-
tee the coarsest possible octree for an arbitrary distribution of N points and arbitrary
values of Np

max, especially when Np
max ≈ N

np
. However, if every processor has at

least 2 well-separated 28 points and if Np
max = 1, then the algorithm will produce the

coarsest possible octree under these constraints. However, this is not too restrictive
because the input points can always be sampled in such a way that the algorithm
produces the desired octree. Besides, the maximum depth of the octree can also be
used to control the coarseness of the resulting octree. In all our experiments, we used
Np

max = 1 and we always got the same octree for different number of processor counts
(Table 4.1).

27The imbalance factor is the ratio between the maximum and minimum number of octants on
any processor.

28Convert the points into octants at Dmax level. If there exists at least one coarse octant between
these two octants, then the points are considered to be well-separated.

